Work in progress. Parsing for non-writeback, single spaced register lists
works now. The rest have the representations better factored, but still
need more to be able to parse properly.
llvm-svn: 146579
Next step in the ongoing saga of NEON load/store assmebly parsing. Handle
VLD1 instructions that take a two-register register list.
Adjust the instruction definitions to only have the single encoded register
as an operand. The super-register from the pseudo is kept as an implicit def,
so passes which come after pseudo-expansion still know that the instruction
defines the other subregs.
llvm-svn: 142670
using llvm's public 'C' disassembler API now including annotations.
Hooked this up to Darwin's otool(1) so it can again print things like branch
targets for example this:
blx _puts
instead of this:
blx #-36
and includes support for annotations for branches to symbol stubs like:
bl 0x40 @ symbol stub for: _puts
and annotations for pc relative loads like this:
ldr r3, #8 @ literal pool for: Hello, world!
Also again can print the expression encoded in the Mach-O relocation entries for
things like this:
movt r0, :upper16:((_foo-_bar)+1234)
llvm-svn: 141129
Encode the immediate into its 8-bit form as part of isel rather than later,
which simplifies things for mapping the encoding bits, allows the removal
of the custom disassembler decoding hook, makes the operand printer trivial,
and prepares things more cleanly for handling these in the asm parser.
rdar://10211428
llvm-svn: 140834
Build on previous patches to successfully distinguish between an M-series and A/R-series MSR and MRS instruction. These take different mask names and have a *slightly* different opcode format.
Add decoder and disassembler tests.
Improvement on the previous patch - successfully distinguish between valid v6m and v7m masks (one is a subset of the other). The patch had to be edited slightly to apply to ToT.
llvm-svn: 140696
There is no non-writeback store multiple instruction in Thumb1, so
don't define one. As a result load multiple is the only instantiation of
the multiclass, so refactor that away entirely.
llvm-svn: 138338
Fix base register type and canonicallize to the "ldm" spelling rather than
"ldmia." Add diagnostics for incorrect writeback token and out-of-range
registers.
llvm-svn: 137986
Represent the operand value as it will be encoded in the instruction. This
allows removing the specialized encoder and decoder methods entirely. Add
an assembler match class while we're at it to lay groundwork for parsing the
thumb shift instructions.
llvm-svn: 137879
Memory operand parsing is a bit haphazzard at the moment, in no small part
due to the even more haphazzard representations of memory operands in the .td
files. Start cleaning that all up, at least a bit.
The addressing modes in the .td files will be being simplified to not be
so monolithic, especially with regards to immediate vs. register offsets
and post-indexed addressing. addrmode3 is on its way with this patch, for
example.
This patch is foundational to enable going back to smaller incremental patches
for the individual memory referencing instructions themselves. It does just
enough to get the basics in place and handle the "make check" regression tests
we already have.
Follow-up work will be fleshing out the details and adding more robust test
cases for the individual instructions, starting with ARM mode and moving from
there into Thumb and Thumb2.
llvm-svn: 136845
specified in the same file that the library itself is created. This is
more idiomatic for CMake builds, and also allows us to correctly specify
dependencies that are missed due to bugs in the GenLibDeps perl script,
or change from compiler to compiler. On Linux, this returns CMake to
a place where it can relably rebuild several targets of LLVM.
I have tried not to change the dependencies from the ones in the current
auto-generated file. The only places I've really diverged are in places
where I was seeing link failures, and added a dependency. The goal of
this patch is not to start changing the dependencies, merely to move
them into the correct location, and an explicit form that we can control
and change when necessary.
This also removes a serialization point in the build because we don't
have to scan all the libraries before we begin building various tools.
We no longer have a step of the build that regenerates a file inside the
source tree. A few other associated cleanups fall out of this.
This isn't really finished yet though. After talking to dgregor he urged
switching to a single CMake macro to construct libraries with both
sources and dependencies in the arguments. Migrating from the two macros
to that style will be a follow-up patch.
Also, llvm-config is still generated with GenLibDeps.pl, which means it
still has slightly buggy dependencies. The internal CMake
'llvm-config-like' macro uses the correct explicitly specified
dependencies however. A future patch will switch llvm-config generation
(when using CMake) to be based on these deps as well.
This may well break Windows. I'm getting a machine set up now to dig
into any failures there. If anyone can chime in with problems they see
or ideas of how to solve them for Windows, much appreciated.
llvm-svn: 136433
Allow the rot_imm operand to be optional. This sets the stage for refactoring
away the "rr" versions from the multiclasses and replacing them with Pat<>s.
llvm-svn: 136154
Start of cleaning this up a bit. First step is to remove the encoder hook by
storing the operand as the bits it'll actually encode to so it can just be
directly used. Map it to the assembly source values 8/16/24 when we print it.
llvm-svn: 136152
The first problem to fix is to stop creating synthetic *Table_gen
targets next to all of the LLVM libraries. These had no real effect as
CMake specifies that add_custom_command(OUTPUT ...) directives (what the
'tablegen(...)' stuff expands to) are implicitly added as dependencies
to all the rules in that CMakeLists.txt.
These synthetic rules started to cause problems as we started more and
more heavily using tablegen files from *subdirectories* of the one where
they were generated. Within those directories, the set of tablegen
outputs was still available and so these synthetic rules added them as
dependencies of those subdirectories. However, they were no longer
properly associated with the custom command to generate them. Most of
the time this "just worked" because something would get to the parent
directory first, and run tablegen there. Once run, the files existed and
the build proceeded happily. However, as more and more subdirectories
have started using this, the probability of this failing to happen has
increased. Recently with the MC refactorings, it became quite common for
me when touching a large enough number of targets.
To add insult to injury, several of the backends *tried* to fix this by
adding explicit dependencies back to the parent directory's tablegen
rules, but those dependencies didn't work as expected -- they weren't
forming a linear chain, they were adding another thread in the race.
This patch removes these synthetic rules completely, and adds a much
simpler function to declare explicitly that a collection of tablegen'ed
files are referenced by other libraries. From that, we can add explicit
dependencies from the smaller libraries (such as every architectures
Desc library) on this and correctly form a linear sequence. All of the
backends are updated to use it, sometimes replacing the existing attempt
at adding a dependency, sometimes adding a previously missing dependency
edge.
Please let me know if this causes any problems, but it fixes a rather
persistent and problematic source of build flakiness on our end.
llvm-svn: 136023
Fix the Rn register encoding for both SSAT and USAT. Update the parsing of the
shift operand to correctly handle the allowed shift types and immediate ranges
and issue meaningful diagnostics when an illegal value or shift type is
specified. Add aliases to parse an ommitted shift operand (default value of
'lsl #0').
Add tests for diagnostics and proper encoding.
llvm-svn: 135990
The immediate is in the range 1-32, but is encoded as 0-31 in a 5-bit bitfield.
Update the representation such that we store the operand as 0-31, allowing us
to remove the encoder method and the special case handling in the disassembler.
Update the assembly parser and the instruction printer accordingly.
llvm-svn: 135823
Move the shift operator and special value (32 encoded as 0 for PKHTB) handling
into the instruction printer. This cleans up a bit of the disassembler
special casing for these instructions, more easily handles not printing the
operand at all for "lsl #0" and prepares for correct asm parsing of these
operands.
llvm-svn: 135626
The system register spec should be case insensitive. The preferred form for
output with mask values of 4, 8, and 12 references APSR rather than CPSR.
Update and tidy up tests accordingly.
llvm-svn: 135532
Now works for parsing register shifted register and register shifted
immediate arithmetic instructions, including the 'rrx' rotate with extend.
llvm-svn: 135049
Print shifted immediate values directly rather than as a payload+shifter
value pair. This makes for more readable output assembly code, simplifies
the instruction printer, and is consistent with how Thumb immediates are
displayed.
llvm-svn: 134902
An alternative syntax is available for a modified immediate constant that permits the programmer to specify
the encoding directly. In this syntax, #<const> is instead written as #<byte>,#<rot>, where:
<byte> is the numeric value of abcdefgh, in the range 0-255
<rot> is twice the numeric value of rotation, an even number in the range 0-30.
llvm-svn: 128897
also fix the encoding of the later.
- Add a new encoding bit to describe the index mode used in AM3.
- Teach printAddrMode3Operand to check by the addressing mode which
index mode to print.
- Testcases.
llvm-svn: 128832
all LDR/STR changes and left them to a future patch. Passing all
checks now.
- Implement asm parsing support for LDRT, LDRBT, STRT, STRBT and
fix the encoding wherever is possible.
- Add a new encoding bit to describe the index mode used and teach
printAddrMode2Operand to check by the addressing mode which index
mode to print.
- Testcases
llvm-svn: 128689
- Implement asm parsing support for LDRT, LDRBT, STRT, STRBT and
{STR,LDC}{2}_{PRE,POST} fixing the encoding wherever is possible.
- Move all instructions which use am2offset without a pattern to use
addrmode2.
- Add a new encoding bit to describe the index mode used and teach
printAddrMode2Operand to check by the addressing mode which index
mode to print.
- Testcases
llvm-svn: 128632
{STR,LDC}{2}_PRE.
- Fixed the encoding in some places.
- Some of those instructions were using am2offset and now use addrmode2.
Codegen isn't affected, instructions which use SelectAddrMode2Offset were not
touched.
- Teach printAddrMode2Operand to check by the addressing mode which index
mode to print.
- This is a work in progress, more work to come. The idea is to change places
which use am2offset to use addrmode2 instead, as to unify assembly parser.
- Add testcases for assembly parser
llvm-svn: 128585
the alias of an InstAlias instead of the thing being aliased. Because we need to
know the features that are valid for an InstAlias.
This is part of a work-in-progress.
llvm-svn: 127986
- Add custom operand matching for imod and iflags.
- Rename SplitMnemonicAndCC to SplitMnemonic since it splits more than CC
from mnemonic.
- While adding ".w" as an operand, don't change "Head" to avoid passing the
wrong mnemonic to ParseOperand.
- Add asm parser tests.
- Add disassembler tests just to make sure it can catch all cps versions.
llvm-svn: 125489
the symbolic immediate names used for these instructions, fixing their pretty-printers, and
adding proper encoding information for them.
With this, we can properly pretty-print and encode assembly like:
mrc p15, #0, r3, c13, c0, #3
Fixes <rdar://problem/8857858>.
llvm-svn: 123404
instruction based on the t_addrmode_s# mode and what it returned. There is some
obvious badness to this. In particular, it's hard to do MC-encoding when the
instruction may change out from underneath you after the t_addrmode_s# variable
is finally resolved.
The solution is to revert a long-ago change that merged the reg/reg and reg/imm
versions. There is the addition of several new addressing modes. They no longer
have extraneous operands associated with them. I.e., if it's reg/reg we don't
have to have a dummy zero immediate tacked on to the SDNode.
There are some obvious cleanups here, which will happen shortly.
llvm-svn: 121747
'db', 'ib', 'da') instead of having that mode as a separate field in the
instruction. It's more convenient for the asm parser and much more readable for
humans.
<rdar://problem/8654088>
llvm-svn: 119310
vldr.64 d1, [r0, #-32]
The problem was with how the addressing mode 5 encodes the offsets. This change
makes sure that the way offsets are handled in addressing mode 5 is consistent
throughout the MC code. It involves re-refactoring the "getAddrModeImmOpValue"
method into an "Imm12" and "addressing mode 5" version. But not to worry! The
majority of the duplicated code has been unified.
llvm-svn: 118144
explicit about the operands. Split out the different variants into separate
instructions. This gives us the ability to, among other things, assign
different scheduling itineraries to the variants. rdar://8477752.
llvm-svn: 117409
been MC-ized for assembly printing. MSP430 is mostly so, but still has the
asm printer and lowering code in the printer subdir for the moment.
llvm-svn: 115360