This also uses TSFlags to mark machine instructions that are surface/texture
accesses, as well as the vector width for surface operations. This is used
to simplify some of the switch statements that need to detect surface/texture
instructions
llvm-svn: 213256
This commit adds intrinsics and codegen support for the surface read/write and texture read instructions that take an explicit sampler parameter. Codegen operates on image handles at the PTX level, but falls back to direct replacement of handles with kernel arguments if image handles are not enabled. Note that image handles are explicitly disabled for all target architectures in this change (to be enabled later).
llvm-svn: 205907
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file. The memory leaks in this version have been fixed. Thanks
Alexey for pointing them out.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
llvm-svn: 195064
This change is incorrect. If you delete virtual destructor of both a base class
and a subclass, then the following code:
Base *foo = new Child();
delete foo;
will not cause the destructor for members of Child class. As a result, I observe
plently of memory leaks. Notable examples I investigated are:
ObjectBuffer and ObjectBufferStream, AttributeImpl and StringSAttributeImpl.
llvm-svn: 194997
This patch removes most of the trivial cases of weak vtables by pinning them to
a single object file.
Differential Revision: http://llvm-reviews.chandlerc.com/D2068
Reviewed by Andy
llvm-svn: 194865
Vectors were being manually scalarized by the backend. Instead,
let the target-independent code do all of the work. The manual
scalarization was from a time before good target-independent support
for scalarization in LLVM. However, this forces us to specially-handle
vector loads and stores, which we can turn into PTX instructions that
produce/consume multiple operands.
llvm-svn: 174968
missed in the first pass because the script didn't yet handle include
guards.
Note that the script is now able to handle all of these headers without
manual edits. =]
llvm-svn: 169224
Each SM and PTX version is modeled as a subtarget feature/CPU. Additionally,
PTX 3.1 is added as the default PTX version to be out-of-the-box compatible
with CUDA 5.0.
Available CPUs for this target:
sm_10 - Select the sm_10 processor.
sm_11 - Select the sm_11 processor.
sm_12 - Select the sm_12 processor.
sm_13 - Select the sm_13 processor.
sm_20 - Select the sm_20 processor.
sm_21 - Select the sm_21 processor.
sm_30 - Select the sm_30 processor.
sm_35 - Select the sm_35 processor.
Available features for this target:
ptx30 - Use PTX version 3.0.
ptx31 - Use PTX version 3.1.
sm_10 - Target SM 1.0.
sm_11 - Target SM 1.1.
sm_12 - Target SM 1.2.
sm_13 - Target SM 1.3.
sm_20 - Target SM 2.0.
sm_21 - Target SM 2.1.
sm_30 - Target SM 3.0.
sm_35 - Target SM 3.5.
llvm-svn: 167699
The new target machines are:
nvptx (old ptx32) => 32-bit PTX
nvptx64 (old ptx64) => 64-bit PTX
The sources are based on the internal NVIDIA NVPTX back-end, and
contain more functionality than the current PTX back-end currently
provides.
NV_CONTRIB
llvm-svn: 156196