The Cyclone CPU is similar to swift for most LLVM purposes, but does have two
preferred instructions for zeroing a VFP register. This teaches LLVM about
them.
llvm-svn: 205309
- krait processor currently modeled with the same features as A9.
- Krait processor additionally has VFP4 (fused multiply add/sub)
and hardware division features enabled.
- krait has currently the same Schedule model as A9
- krait cpu flag is not recognized by the GNU assembler yet,
it is replaced with march=armv7-a to avoid a lower march
from being used.
llvm-svn: 196619
Add a Virtualization ARM subtarget feature along with adding proper build
attribute emission for Tag_Virtualization_use (encodes Virtualization and
TrustZone) and Tag_MPextension_use.
Also rework test/CodeGen/ARM/2010-10-19-mc-elf-objheader.ll testcase to
something that is more maintainable. This changes the focus of this
testcase away from testing CPU defaults (which is tested elsewhere), onto
specifically testing that attributes are encoded correctly.
llvm-svn: 193859
Adds a subtarget feature for the CRC instructions (optional in v8-A) to the ARM (32-bit) backend.
Differential Revision: http://llvm-reviews.chandlerc.com/D2036
llvm-svn: 193599
This commit allows the ARM integrated assembler to parse
and assemble the code with .eabi_attribute, .cpu, and
.fpu directives.
To implement the feature, this commit moves the code from
AttrEmitter to ARMTargetStreamers, and several new test
cases related to cortex-m4, cortex-r5, and cortex-a15 are
added.
Besides, this commit also change the Subtarget->isFPOnlySP()
to Subtarget->hasD16() to match the usage of .fpu directive.
This commit changes the test cases:
* Several .eabi_attribute directives in
2010-09-29-mc-asm-header-test.ll are removed because the .fpu
directive already cover the functionality.
* In the Cortex-A15 test case, the value for
Tag_Advanced_SIMD_arch has be changed from 1 to 2,
which is more precise.
llvm-svn: 193524
The hint instructions ("nop", "yield", etc) are mostly Thumb2-only, but have
been ported across to the v6M architecture. Fortunately, v6M seems to sit
nicely between v6 (thumb-1 only) and v6T2, so we can add a feature for it
fairly easily.
rdar://problem/15144406
llvm-svn: 192097
Some ARM CPUs only support ARM mode (ancient v4 ones, for example) and some
only support Thumb mode (M-class ones currently). This makes sure such CPUs
default to the correct mode and makes the AsmParser diagnose an attempt to
switch modes incorrectly.
rdar://14024354
llvm-svn: 183710
Performance monitors, including a basic cycle counter, are an official
extension in the ARMv7 specification. This adds support for enabling and
disabling them, orthogonally from CPU selection.
rdar://problem/13939186
llvm-svn: 182602
These instructions aren't universally available, but depend on a specific
extension to the normal ARM architecture (rather than, say, v6/v7/...) so a new
feature is appropriate.
This also enables the feature by default on A-class cores which usually have
these extensions, to avoid breaking existing code and act as a sensible
default.
llvm-svn: 179171
NEON is not IEEE 754 compliant, so we should avoid lowering single-precision
floating point operations with NEON unless unsafe-math is turned on. The
equivalent VFP instructions are IEEE 754 compliant, but in some cores they're
much slower, so some archs/OSs might still request it to be on by default,
such as Swift and Darwin.
llvm-svn: 177651
are more expensive than the non-flag setting variant. Teach thumb2 size
reduction pass to avoid generating them unless we are optimizing for size.
rdar://12892707
llvm-svn: 170728
subtarget CPU descriptions and support new features of
MachineScheduler.
MachineModel has three categories of data:
1) Basic properties for coarse grained instruction cost model.
2) Scheduler Read/Write resources for simple per-opcode and operand cost model (TBD).
3) Instruction itineraties for detailed per-cycle reservation tables.
These will all live side-by-side. Any subtarget can use any
combination of them. Instruction itineraries will not change in the
near term. In the long run, I expect them to only be relevant for
in-order VLIW machines that have complex contraints and require a
precise scheduling/bundling model. Once itineraries are only actively
used by VLIW-ish targets, they could be replaced by something more
appropriate for those targets.
This tablegen backend rewrite sets things up for introducing
MachineModel type #2: per opcode/operand cost model.
llvm-svn: 159891
This makes it explicit when ScoreboardHazardRecognizer will be used.
"GenericItineraries" would only make sense if it contained real
itinerary values and still required ScoreboardHazardRecognizer.
llvm-svn: 158963
predicates.
Also remove NEON2 since it's not really useful and it is confusing. If
NEON + VFP4 implies NEON2 but NEON2 doesn't imply NEON + VFP4, what does it
really mean?
rdar://10139676
llvm-svn: 154480
1. The new instruction itinerary entries are not properly described.
2. The asm parser can't handle vfms and vfnms.
3. There were no assembler, disassembler test cases.
4. HasNEON2 has the wrong assembler predicate.
rdar://10139676
llvm-svn: 154456
In this update:
- I assumed neon2 does not imply vfpv4, but neon and vfpv4 imply neon2.
- I kept setting .fpu=neon-vfpv4 code attribute because that is what the
assembler understands.
Patch by Ana Pazos <apazos@codeaurora.org>
llvm-svn: 152036
the processor keeps a return addresses stack (RAS) which stores the address
and the instruction execution state of the instruction after a function-call
type branch instruction.
Calling a "noreturn" function with normal call instructions (e.g. bl) can
corrupt RAS and causes 100% return misprediction so LLVM should use a
unconditional branch instead. i.e.
mov lr, pc
b _foo
The "mov lr, pc" is issued in order to get proper backtrace.
rdar://8979299
llvm-svn: 151623
Build on previous patches to successfully distinguish between an M-series and A/R-series MSR and MRS instruction. These take different mask names and have a *slightly* different opcode format.
Add decoder and disassembler tests.
Improvement on the previous patch - successfully distinguish between valid v6m and v7m masks (one is a subset of the other). The patch had to be edited slightly to apply to ToT.
llvm-svn: 140696
instructions are more aligned than the CPU requires, and adds some additional
directives, to follow in future patches. Patch by David Meyer!
llvm-svn: 139125