into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
[Joe Groff] Hi everyone. My previous patch applied as r151382 had a few problems:
Clang raised a warning, and X86 LowerOperation would assert out for
fptoui f64 to i32 because it improperly lowered to an illegal
BUILD_PAIR. Here's a patch that addresses these issues. Let me know if
any other changes are necessary. Thanks.
llvm-svn: 151432
X86FloatingPoint keeps track of pending ST registers for an upcoming
inline asm instruction with fixed stack register constraints. It does
this by remembering which FP register holds the value that should appear
at a fixed stack position for the inline asm.
When that FP register is killed before the inline asm, make sure to
duplicate it to a scratch register, so the ST register still has a live
FP reference.
This could happen when the same FP register was copied to two ST
registers, or when a spill instruction is inserted between the ST copy
and the inline asm.
This fixes PR10602.
llvm-svn: 137050
Add a MI->emitError() method that the backend can use to report errors
related to inline assembly. Call it from X86FloatingPoint.cpp when the
constraints are wrong.
This enables proper clang diagnostics from the backend:
$ clang -c pr30848.c
pr30848.c:5:12: error: Inline asm output regs must be last on the x87 stack
__asm__ ("" : "=u" (d)); /* { dg-error "output regs" } */
^
1 error generated.
llvm-svn: 134307
Drop the FpMov instructions, use plain COPY instead.
Drop the FpSET/GET instruction for accessing fixed stack positions.
Instead use normal COPY to/from ST registers around inline assembly, and
provide a single new FpPOP_RETVAL instruction that can access the return
value(s) from a call. This is still necessary since you cannot tell from
the CALL instruction alone if it returns anything on the FP stack. Teach
fast isel to use this.
This provides a much more robust way of handling fixed stack registers -
we can tolerate arbitrary FP stack instructions inserted around calls
and inline assembly. Live range splitting could sometimes break x87 code
by inserting spill code in unfortunate places.
As a bonus we handle floating point inline assembly correctly now.
llvm-svn: 134018
The analysis will be needed by both the greedy register allocator and the
X86FloatingPoint pass. It only needs to be computed once when the CFG doesn't
change.
This pass is very fast, usually showing up as 0.0% wall time.
llvm-svn: 122832
FP_REG_KILL instructions are still inserted, but can be disabled by passing
-live-x87 to llc. The X87FPRegKillInserterPass is going to be removed shortly.
CFG edges are partioned into bundles where the x87 stack must be allocated
identically. Code is insertad at the end of each basic block that shuffles the
live FP registers to match the outgoing bundles expectations.
This fix is in preparation for some upcoming register allocator improvements
that may extend the live range of registers beyond a basic block, similar to
LICM. It also provides a nice runtime speedup if you are building with
-mfpmath=387.
llvm-svn: 108529
Based on a patch by Rafael Espíndola.
Attempt to make the FpSET_ST1 hack more robust, but we are still relying on
FpSET_ST0 preceeding it. This is only for supporting really weird x87 inline
asm.
We support:
FpSET_ST0
INLINEASM
FpSET_ST0
FpSET_ST1
INLINEASM
with and without kills on the arguments. We don't support:
FpSET_ST1
FpSET_ST0
INLINEASM
nor
FpSET_ST1
INLINEASM
Just Don't Do It!
llvm-svn: 108047
This pass runs before COPY instructions are passed to copyPhysReg, so we simply
translate COPY to the proper pseudo instruction. Note that copyPhysReg does not
handle floating point stack copies.
Once COPY is used everywhere, this can be cleaned up a bit, and most of the
pseudo instructions can be removed.
llvm-svn: 107899