initializer to update the type of the declaration. For example, this
allows us to determine the size of an incomplete array from its
initializer. Fixes PR10288.
llvm-svn: 141543
conversion function whose result type is an lvalue reference. The
initialization code already handled this properly, but overload
resolution was allowing the binding. Fixes PR11003 /
<rdar://problem/10233078>.
llvm-svn: 141137
- This fixes a host of obscure bugs with regards to how warning mapping options composed with one another, and I believe makes the code substantially easier to read and reason about.
llvm-svn: 140770
This makes the code duplication of implicit special member handling even worse,
but the cleanup will have to come later. For now, this works.
Follow-up with tests for explicit defaulting and enabling the __has_feature
flag to come.
llvm-svn: 138821
qualification of a type doesn't affect whether a conversion is a narrowing
conversion.
This doesn't work in template cases because SubstTemplateTypeParmType gets in
the way.
llvm-svn: 138735
[dcl.init.list] as is possible without generalized initializer lists or full
constant expression support, and adds a c++0x-compat warning in C++98 mode.
The FixIt currently uses a typedef's basename without qualification, which is
likely to be incorrect on some code. If it's incorrect on too much code, we
should write a function to get the string that refers to a type from a
particular context.
The warning is currently off by default. I'll fix LLVM and clang before turning
it on.
llvm-svn: 136181
Revert "For C++11, do more checking of initializer lists up-front, enabling some subset of the final functionality. C just leaves the function early. C++98 runs through the same code path, but has no changed functionality either."
This reverts commit ac420c5053d6aa41d59f782caad9e46e5baaf2c2.
llvm-svn: 135210
This is a first baby step towards supporting generalized initializer lists. This also removes an aggregate
test case that was just plain wrong, assuming that non-aggregates couldn't be initialized with initializer lists
in C++11 mode.
llvm-svn: 135177
should use a constructor to default-initialize a
variable. InitializationSequence knows the rules for default
initialization, better. Fixes <rdar://problem/8501008>.
llvm-svn: 131796
* 'auto' was being rejected on abstract-declarators with trailing return
types and on typedefs with trailing return types. 'auto' is always
allowed in these cases. This was found while testing the fix for PR 9278.
* A very poor diagnostic was being issued for auto (f() -> int): "return
type must be 'auto', not 'auto'". This is closely related to PR 9060.
* Trailing return type handling was happening slightly too late,
resulting in the checks for functions returning arrays and functions
returning functions being missed.
llvm-svn: 126166
- Add ref-qualifiers to the type system; they are part of the
canonical type. Print & profile ref-qualifiers
- Translate the ref-qualifier from the Declarator chunk for
functions to the function type.
- Diagnose mis-uses of ref-qualifiers w.r.t. static member
functions, free functions, constructors, destructors, etc.
- Add serialization and deserialization of ref-qualifiers.
llvm-svn: 124281
implementation used by overload resolution to support rvalue
references. The original commits caused PR9026 and some
hard-to-reproduce self-host breakage.
The only (crucial!) difference between this commit and the previous
commits is that we now properly check the SuppressUserConversions flag
before attempting to perform a second user-defined conversion in
reference binding, breaking the infinite recursion chain of
user-defined conversions.
Rvalue references should be working a bit better now.
llvm-svn: 124121
resolution to match the latest C++0x working paper's semantics. The
implementation now matching up with the reference-binding
implementation used for initialization.
llvm-svn: 123977
specification. In particular, an rvalue reference can bind to an
initializer expression that is an lvalue if the referent type and the
initializer expression type are not reference-related. This is a newer
formulation to the previous "rvalue references can never bind to
lvalues" rule.
llvm-svn: 123952
working paper's structure. The only functional change here is that we
now handling binding to array rvalues, which we would previously reject.
llvm-svn: 123918
involving rvalue references, to start scoping out what is and what
isn't implemented. In the process, tweak some standards citations,
type desugaring, and teach the tentative parser about && in
ptr-operator.
llvm-svn: 123913
1) Declaration of function parameter packs
2) Instantiation of function parameter packs within function types.
3) Template argument deduction of function parameter packs when
matching two function types.
We're missing all of the important template-instantiation logic for
function template definitions, along with template argument deduction
from the argument list of a function call, so don't even think of
trying to use these for real yet.
llvm-svn: 122926
declaration name of the array when present. This ensures that
a poor-man's C++03 static_assert will include the user error message
often embedded in the name.
Update all the tests to reflect the new wording, and add a test for the
name behavior.
llvm-svn: 122802
packs, e.g.,
template<typename T, unsigned ...Dims> struct multi_array;
along with semantic analysis support for finding unexpanded non-type
template parameter packs in types, expressions, and so on.
Template instantiation involving non-type template parameter packs
probably doesn't work yet. That'll come soon.
llvm-svn: 122527
parameter packs (C++0x [dcl.fct]p13), including disambiguation between
unnamed function parameter packs and varargs (C++0x [dcl.fct]p14) for
cases like
void f(T...)
where T may or may not contain unexpanded parameter packs.
llvm-svn: 122520
store it on the expression node. Also store an "object kind",
which distinguishes ordinary "addressed" l-values (like
variable references and pointer dereferences) and bitfield,
@property, and vector-component l-values.
Currently we're not using these for much, but I aim to switch
pretty much everything calculating l-valueness over to them.
For now they shouldn't necessarily be trusted.
llvm-svn: 119685
prototype scope, temporarily set the context of the enumeration
declaration to the translation unit. We do the same thing for
parameters, until we have an actual function declaration on which to
hang them. Fixes <rdar://problem/8435682>.
There is more work to do in this area, since we have existing bugs
with tags being declared/defined in function parameter lists. This fix
is correct, and we'll end up extending it when we deal with those
existing bugs.
llvm-svn: 114135
method parameter, provide a note pointing at the parameter itself so
the user does not have to manually look for the function/method being
called and match up parameters to arguments. For example, we now get:
t.c:4:5: warning: incompatible pointer types passing 'long *' to
parameter of
type 'int *' [-pedantic]
f(long_ptr);
^~~~~~~~
t.c:1:13: note: passing argument to parameter 'x' here
void f(int *x);
^
llvm-svn: 102038
reference binding to an rvalue of reference-compatible type, check
parameters after the first for complete parameter types and build any
required default function arguments. We're effectively simulating the
type-checking for a call without building the call itself.
llvm-svn: 101705
reference-compatible type, the implementation is permitted to make a
copy of the rvalue (or many such copies, even). However, even though
we don't make that copy, we are required to check for the presence of
a suitable copy constructor. With this change, we do.
Note that in C++0x we are not allowed to make these copies, so we test
both dialects separately.
Also note the FIXME in one of the C++03 tests, where we are not
instantiating default function arguments for the copy constructor we
pick (but do not call). The fix is obvious; eliminating the infinite
recursion it causes is not. Will address that next.
llvm-svn: 101704
that have reference or const scalar members, since those members can
never be initializer or modified. Fixes <rdar://problem/7804350>.
llvm-svn: 101316
Remove -faccess-control from -cc1; add -fno-access-control.
Make the driver pass -fno-access-control by default.
Update a bunch of tests to be correct under access control.
llvm-svn: 100880
therefore not creating ElaboratedTypes, which are still pretty-printed
with the written tag).
Most of these testcase changes were done by script, so don't feel too
sorry for my fingers.
llvm-svn: 98149
uninitialized. This seems not to be the case in C++0x, where we still
call the (trivial) default constructor for a POD class
(!). Previously, we had implemented only the C++0x rules; now we
implement both. Fixes PR6536.
llvm-svn: 97928
Sema::ActOnUninitializedDecl over to InitializationSequence (with
default initialization), eliminating redundancy. More importantly, we
now check that a const definition in C++ has an initilizer, which was
an #if 0'd code for many, many months. A few other tweaks were needed
to get everything working again:
- Fix all of the places in the testsuite where we defined const
objects without initializers (now that we diagnose this issue)
- Teach instantiation of static data members to find the previous
declaration, so that we build proper redeclaration
chains. Previously, we had the redeclaration chain but built it
too late to be useful, because...
- Teach instantiation of static data member definitions not to try
to check an initializer if a previous declaration already had an
initializer. This makes sure that we don't complain about static
const data members with in-class initializers and out-of-line
definitions.
- Move all of the incomplete-type checking logic out of
Sema::FinalizeDeclaratorGroup; it makes more sense in
ActOnUnitializedDecl.
There may still be a few places where we can improve these
diagnostics. I'll address that as a separate commit.
llvm-svn: 95657
(necessarily simultaneous) changes:
- CXXBaseOrMemberInitializer now contains only a single initializer
rather than a set of initialiation arguments + a constructor. The
single initializer covers all aspects of initialization, including
constructor calls as necessary but also cleanup of temporaries
created by the initializer (which we never handled
before!).
- Rework + simplify code generation for CXXBaseOrMemberInitializers,
since we can now just emit the initializer as an initializer.
- Switched base and member initialization over to the new
initialization code (InitializationSequence), so that it
- Improved diagnostics for the new initialization code when
initializing bases and members, to match the diagnostics produced
by the previous (special-purpose) code.
- Simplify the representation of type-checked constructor initializers in
templates; instead of keeping the fully-type-checked AST, which is
rather hard to undo at template instantiation time, throw away the
type-checked AST and store the raw expressions in the AST. This
simplifies instantiation, but loses a little but of information in
the AST.
- When type-checking implicit base or member initializers within a
dependent context, don't add the generated initializers into the
AST, because they'll look like they were explicit.
- Record in CXXConstructExpr when the constructor call is to
initialize a base class, so that CodeGen does not have to infer it
from context. This ensures that we call the right kind of
constructor.
There are also a few "opportunity" fixes here that were needed to not
regress, for example:
- Diagnose default-initialization of a const-qualified class that
does not have a user-declared default constructor. We had this
diagnostic specifically for bases and members, but missed it for
variables. That's fixed now.
- When defining the implicit constructors, destructor, and
copy-assignment operator, set the CurContext to that constructor
when we're defining the body.
llvm-svn: 94952
why the candidate is non-viable. There's a lot we can do to improve this, but
it's a good start. Further improvements should probably be integrated with the
bad-initialization reporting routines.
llvm-svn: 93277
small bug fixes in SemaInit, switch over SemaDecl to use it more often, and
change a bunch of diagnostics which are different with the new initialization
code.
llvm-svn: 91767
new InitializationSequence. This fixes some bugs (e.g., PR5808),
changed some diagnostics, and caused more churn than expected. What's
new:
- InitializationSequence now has a "C conversion sequence" category
and step kind, which falls back to
- Changed the diagnostics for returns to always have the result type
of the function first and the type of the expression second.
CheckSingleAssignmentConstraints to peform checking in C.
- Improved ASTs for initialization of return values. The ASTs now
capture all of the temporaries we need to create, but
intentionally do not bind the tempoary that is actually returned,
so that it won't get destroyed twice.
- Make sure to perform an (elidable!) copy of the class object that
is returned from a class.
- Fix copy elision in CodeGen to properly see through the
subexpressions that occur with elidable copies.
- Give "new" its own entity kind; as with return values and thrown
objects, we don't bind the expression so we don't call a
destructor for it.
Note that, with this patch, I've broken returning move-only types in
C++0x. We'll fix it later, when we tackle NRVO.
llvm-svn: 91669
- This is designed to make it obvious that %clang_cc1 is a "test variable"
which is substituted. It is '%clang_cc1' instead of '%clang -cc1' because it
can be useful to redefine what gets run as 'clang -cc1' (for example, to set
a default target).
llvm-svn: 91446
new notion of an "initialization sequence", which encapsulates the
computation of the initialization sequence along with diagnostic
information and the capability to turn the computed sequence into an
expression. At present, I've only switched one CheckReferenceInit
callers over to this new mechanism; more will follow.
Aside from (hopefully) being much more true to the standard, the
diagnostics provided by this reference-initialization code are a bit
better than before. Some examples:
p5-var.cpp:54:12: error: non-const lvalue reference to type 'struct
Derived'
cannot bind to a value of unrelated type 'struct Base'
Derived &dr2 = b; // expected-error{{non-const lvalue reference to
...
^ ~
p5-var.cpp:55:9: error: binding of reference to type 'struct Base' to
a value of
type 'struct Base const' drops qualifiers
Base &br3 = bc; // expected-error{{drops qualifiers}}
^ ~~
p5-var.cpp:57:15: error: ambiguous conversion from derived class
'struct Diamond' to base class 'struct Base':
struct Diamond -> struct Derived -> struct Base
struct Diamond -> struct Derived2 -> struct Base
Base &br5 = diamond; // expected-error{{ambiguous conversion from
...
^~~~~~~
p5-var.cpp:59:9: error: non-const lvalue reference to type 'long'
cannot bind to
a value of unrelated type 'int'
long &lr = i; // expected-error{{non-const lvalue reference to type
...
^ ~
p5-var.cpp:74:9: error: non-const lvalue reference to type 'struct
Base' cannot
bind to a temporary of type 'struct Base'
Base &br1 = Base(); // expected-error{{non-const lvalue reference to
...
^ ~~~~~~
p5-var.cpp:102:9: error: non-const reference cannot bind to bit-field
'i'
int & ir1 = (ib.i); // expected-error{{non-const reference cannot
...
^ ~~~~~~
p5-var.cpp:98:7: note: bit-field is declared here
int i : 17; // expected-note{{bit-field is declared here}}
^
llvm-svn: 90992
into pretty much everything about overload resolution in order to wean
BuildDeclarationNameExpr off LookupResult::getAsSingleDecl(). Replace
UnresolvedFunctionNameExpr with UnresolvedLookupExpr, which generalizes the
idea of a non-member lookup that we haven't totally resolved yet, whether by
overloading, argument-dependent lookup, or (eventually) the presence of
a function template in the lookup results.
Incidentally fixes a problem with argument-dependent lookup where we were
still performing ADL even when the lookup results contained something from
a block scope.
Incidentally improves a diagnostic when using an ObjC ivar from a class method.
This just fell out from rewriting BuildDeclarationNameExpr's interaction with
lookup, and I'm too apathetic to break it out.
The only remaining uses of OverloadedFunctionDecl that I know of are in
TemplateName and MemberExpr.
llvm-svn: 89544
- Diagnose attempts to add default arguments to templates (or member
functions of templates) after the initial declaration (DR217).
- Improve diagnostics when a default argument is redefined. Now, the
note will always point at the place where the default argument was
previously defined, rather than pointing to the most recent
declaration of the function.
llvm-svn: 81548