cases that demonstrates exactly why this does indeed apply in 0x mode.
If isPOD is currently broken in 0x mode, we should fix that directly
rather than papering over it here.
llvm-svn: 130007
This fixes 1 error when parsing the MSVC 2008 header files.
Example:
template<class T> class A {
public:
typedef int TYPE;
};
template<class T> class B : public A<T> {
public:
A<T>::TYPE a; // no typename required because A<T> is a base class.
};
llvm-svn: 129425
This patch authored by Eric Niebler.
Many methods on the Sema class (e.g. ConvertPropertyForRValue) take Expr
pointers as in/out parameters (Expr *&). This is especially true for the
routines that apply implicit conversions to nodes in-place. This design is
workable only as long as those conversions cannot fail. If they are allowed
to fail, they need a way to report their failures. The typical way of doing
this in clang is to use an ExprResult, which has an extra bit to signal a
valid/invalid state. Returning ExprResult is de riguour elsewhere in the Sema
interface. We suggest changing the Expr *& parameters in the Sema interface
to ExprResult &. This increases interface consistency and maintainability.
This interface change is important for work supporting MS-style C++
properties. For reasons explained here
<http://lists.cs.uiuc.edu/pipermail/cfe-dev/2011-February/013180.html>,
seemingly trivial operations like rvalue/lvalue conversions that formerly
could not fail now can. (The reason is that given the semantics of the
feature, getter/setter method lookup cannot happen until the point of use, at
which point it may be found that the method does not exist, or it may have the
wrong type, or overload resolution may fail, or it may be inaccessible.)
llvm-svn: 129143
1) Change the CFG to include the DeclStmt for conditional variables, instead of using the condition itself as a faux DeclStmt.
2) Update ExprEngine (the static analyzer) to understand (1), so not to regress.
3) Update UninitializedValues.cpp to initialize all tracked variables to Uninitialized at the start of the function/method.
4) Only use the SelfReferenceChecker (SemaDecl.cpp) on global variables, leaving the dataflow analysis to handle other cases.
The combination of (1) and (3) allows the dataflow-based -Wuninitialized to find self-init problems when the initializer
contained control-flow.
llvm-svn: 128858
This is basically the same idea as the warning on uninitialized uses of
fields within an initializer list. As such, it is on by default and
under -Wuninitialized.
Original patch by Richard Trieu, with some massaging from me on the
wording and grouping of the diagnostics.
llvm-svn: 128376
AttributeLists do not accumulate over the lifetime of parsing, but are
instead reused. Also make the arguments array not require a separate
allocation, and make availability attributes store their stuff in
augmented memory, too.
llvm-svn: 128209
forward-looking "goto" statement, make sure to insert it *after* the
last declaration in the identifier resolver's declaration chain that
is either outside of the function/block/method's scope or that is
declared in that function/block/method's specific scope. Previously,
we could end up inserting the label ahead of declarations in inner
scopes, confusing C++ name lookup.
Fixes PR9491/<rdar://problem/9140426> and <rdar://problem/9135994>.
Note that the crash-on-invalid PR9495 is *not* fixed. That's a
separate issue.
llvm-svn: 127737
cannot yet be resolved, be sure to push the new label declaration into
the right place within the identifier chain. Otherwise, name lookup in
C++ gets confused when searching for names that are lexically closer
than the label. Fixes PR9463.
llvm-svn: 127623
Change the interface to expose the new information and deal with the enormous fallout.
Introduce the new ExceptionSpecificationType value EST_DynamicNone to more easily deal with empty throw specifications.
Update the tests for noexcept and fix the various bugs uncovered, such as lack of tentative parsing support.
llvm-svn: 127537
of a C++0x inline namespace within enclosing namespaces, as noted in
C++0x [namespace.def]p8.
Fixes <rdar://problem/9006349>, a libc++ failure where Clang was
rejected an explicit specialization of std::swap (since libc++ puts it
into an inline, versioned namespace std::__1).
llvm-svn: 127162
nested-name-speciciers within elaborated type names, e.g.,
enum clang::NestedNameSpecifier::SpecifierKind
Fixes in this iteration include:
(1) Compute the type-source range properly for a dependent template
specialization type that starts with "template template-id ::", as
in a member access expression
dep->template f<T>::f()
This is a latent bug I triggered with this change (because now we're
checking the computed source ranges for dependent template
specialization types). But the real problem was...
(2) Make sure to set the qualifier range on a dependent template
specialization type appropriately. This will go away once we push
nested-name-specifier locations into dependent template
specialization types, but it was the source of the
valgrind errors on the buildbots.
llvm-svn: 126765
information for qualifier type names throughout the parser to address
several problems.
The commit message from r126737:
Push nested-name-specifier source location information into elaborated
name types, e.g., "enum clang::NestedNameSpecifier::SpecifierKind".
Aside from the normal changes, this also required some tweaks to the
parser. Essentially, when we're looking at a type name (via
getTypeName()) specifically for the purpose of creating an annotation
token, we pass down the flag that asks for full type-source location
information to be stored within the returned type. That way, we retain
source-location information involving nested-name-specifiers rather
than trying to reconstruct that information later, long after it's
been lost in the parser.
With this change, test/Index/recursive-cxx-member-calls.cpp is showing
much improved results again, since that code has lots of
nested-name-specifiers.
llvm-svn: 126748
name types, e.g., "enum clang::NestedNameSpecifier::SpecifierKind".
Aside from the normal changes, this also required some tweaks to the
parser. Essentially, when we're looking at a type name (via
getTypeName()) specifically for the purpose of creating an annotation
token, we pass down the flag that asks for full type-source location
information to be stored within the returned type. That way, we retain
source-location information involving nested-name-specifiers rather
than trying to reconstruct that information later, long after it's
been lost in the parser.
With this change, test/Index/recursive-cxx-member-calls.cpp is showing
much improved results again, since that code has lots of
nested-name-specifiers.
llvm-svn: 126737
source-location information. We don't actually preserve this
information in any of the resulting TypeLocs (yet), so it doesn't
matter.
llvm-svn: 126693
* Flag indicating 'we're parsing this auto typed variable's initializer' moved from VarDecl to Sema
* Temporary template parameter list for auto deduction is now allocated on the stack.
* Deduced 'auto' types are now uniqued.
llvm-svn: 126139
making them be template instantiated in a more normal way and
make them handle attributes like other decls.
This fixes the used/unused label handling stuff, making it use
the same infrastructure as other decls.
llvm-svn: 125771
LabelDecl and LabelStmt. There is a 1-1 correspondence between the
two, but this simplifies a bunch of code by itself. This is because
labels are the only place where we previously had references to random
other statements, causing grief for AST serialization and other stuff.
This does cause one regression (attr(unused) doesn't silence unused
label warnings) which I'll address next.
This does fix some minor bugs:
1. "The only valid attribute " diagnostic was capitalized.
2. Various diagnostics printed as ''labelname'' instead of 'labelname'
3. This reduces duplication of label checking between functions and blocks.
Review appreciated, particularly for the cindex and template bits.
llvm-svn: 125733
instead from the Scope; Inner scopes in bodies don't have DeclContexts associated with them.
Fixes http://llvm.org/PR9160 & rdar://problem/8966163.
llvm-svn: 125097
say "out-of-line definition differ from the declaration in the return type" instead of
the silly "functions that differ only in their return type cannot be overloaded".
Addresses rdar://7980179.
llvm-svn: 124939
The difference with gcc is that it warns if you overload virtual methods only if
the method doesn't also override any method. This is to cut down on the number of warnings
and make it more useful like reported here: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=20423.
If we want to warn that not all overloads are overriden we can have an additional
warning like -Wpartial-override.
-Woverloaded-virtual, unlike gcc, is added to -Wmost. Addresses rdar://8757630.
llvm-svn: 124805
extremely rambunctious, both on parsing and on template instantiation.
Calm it down, fixing an internal consistency assert on anonymous enum
instantiation manglings.
llvm-svn: 124653
clang's -Wuninitialized-experimental warning.
While these don't look like real bugs, clang's
-Wuninitialized-experimental analysis is stricter
than GCC's, and these fixes have the benefit
of being general nice cleanups.
llvm-svn: 124072
Inheritable attributes on declarations may be inherited by any later
redeclaration at merge time. By contrast, a non-inheritable attribute
will not be inherited by later redeclarations. Non-inheritable
attributes may be semantically analysed early, allowing them to
influence the redeclaration/overloading process.
Before this change, the "overloadable" attribute received special
handling to be treated as non-inheritable, while all other attributes
were treated as inheritable. This patch generalises the concept,
while removing a FIXME. Some CUDA location attributes are also marked
as non-inheritable in order to support special overloading semantics
(to be introduced in a later patch).
The patch introduces a new Attr subclass, InheritableAttr, from
which all inheritable attributes derive. Non-inheritable attributes
simply derive from Attr.
N.B. I did not review every attribute to determine whether it should
be marked non-inheritable. This can be done later on an incremental
basis, as this change does not affect default functionality.
llvm-svn: 123959
there's a respectable point of instantiation. Also, make sure we do
this operation even when instantiating a dependently-typed variable.
llvm-svn: 123818
1) Declaration of function parameter packs
2) Instantiation of function parameter packs within function types.
3) Template argument deduction of function parameter packs when
matching two function types.
We're missing all of the important template-instantiation logic for
function template definitions, along with template argument deduction
from the argument list of a function call, so don't even think of
trying to use these for real yet.
llvm-svn: 122926
don't have access to (e.g., fprintf, which needs the library type
FILE), fail with a warning and forget about the builtin
entirely. Previously, we would actually provide an error, which breaks
autoconf's super-lame checks for fprintf, longjmp, etc. Fixes PR8316.
llvm-svn: 122744
parameter packs (C++0x [dcl.fct]p13), including disambiguation between
unnamed function parameter packs and varargs (C++0x [dcl.fct]p14) for
cases like
void f(T...)
where T may or may not contain unexpanded parameter packs.
llvm-svn: 122520
new gcc warning that complains on self-assignments and
self-initializations. Fix one bug found by the warning, in which one
clang::OverloadCandidate constructor failed to initialize its
FunctionTemplate member.
llvm-svn: 122459
inconsistent with the type that the builtin *should* have, forget
about the builtin altogether: we don't want subsequence analyses,
CodeGen, etc., to think that we have a proper builtin function.
C is protected from errors here because it allows one to use a
library builtin without having a declaration, and detects inconsistent
(re-)declarations of builtins during declaration merging. C++ was
unprotected, and therefore would crash.
Fixes PR8839.
llvm-svn: 122351
declarations. This is a work in progress, as I go through the C++
declaration grammar to identify where unexpanded parameter packs can
occur.
llvm-svn: 121912
Diagnostic pragmas are broken because we don't keep track of the diagnostic state changes and we only check the current/latest state.
Problems manifest if a diagnostic is emitted for a source line that has different diagnostic state than the current state; this can affect
a lot of places, like C++ inline methods, template instantiations, the lexer, etc.
Fix the issue by having the Diagnostic object keep track of the source location of the pragmas so that it is able to know what is the diagnostic state at any given source location.
Fixes rdar://8365684.
llvm-svn: 121873
within the class. Teach IR gen to look for function definitions in record
lexical contexts when deciding whether to emit a function whose address
was taken. Fixes PR8789.
llvm-svn: 121833
class to be passed around. The line between argument and return types and
everything else is kindof vague, but I think it's justifiable.
llvm-svn: 121752
and TemplateArgument with an operation that determines whether there
are any unexpanded parameter packs within that construct. Use this
information to diagnose the appearance of the names of parameter packs
that have not been expanded (C++ [temp.variadic]p5). Since this
property is checked often (every declaration, ever expression
statement, etc.), we extend Type and Expr with a bit storing the
result of this computation, rather than walking the AST each time to
determine whether any unexpanded parameter packs occur.
This commit is deficient in several ways, which will be remedied with
future commits:
- Expr has a bit to store the presence of an unexpanded parameter
pack, but it is never set.
- The error messages don't point out where the unexpanded parameter
packs were named in the type/expression, but they should.
- We don't check for unexpanded parameter packs in all of the places
where we should.
- Testing is sparse, pending the resolution of the above three
issues.
llvm-svn: 121724
space better. Remove this reference. To make that work, change some APIs
(most importantly, getDesugaredType()) to take an ASTContext& if they
need to return a QualType. Simultaneously, diminish the need to return a
QualType by introducing some useful APIs on SplitQualType, which is
just a std::pair<const Type *, Qualifiers>.
llvm-svn: 121478
zextOrTrunc(), and APSInt methods extend(), extOrTrunc() and new method
trunc(), to be const and to return a new value instead of modifying the
object in place.
llvm-svn: 121121
A new AST node is introduced:
def IndirectField : DDecl<Value>;
IndirectFields are injected into the anonymous's parent scope and chain back to
the original field. Name lookup for anonymous entities now result in an
IndirectFieldDecl instead of a FieldDecl.
There is no functionality change, the code generated should be the same.
llvm-svn: 119919
redeclarations of main appropriately rather than allowing it to be
overloaded. Also, disallowing declaring main as a template.
Fixes GCC DejaGNU g++.old-deja/g++.other/main1.C.
llvm-svn: 117029
construct an unsupported friend when there's a friend with a templated
scope specifier. Fixes a consistency crash, rdar://problem/8540527
llvm-svn: 116786
by marking the decl invalid isn't. Make some steps towards supporting these
and then hastily shut them down at the last second by marking them as
unsupported.
llvm-svn: 116661
flexible array member, so long as the flexibility array member is
either not initialized or is initialized with an empty initializer
list. Fixes <rdar://problem/8540437>.
llvm-svn: 116647