Commit Graph

9 Commits

Author SHA1 Message Date
Hans Wennborg 8eb336c14e Re-commit r269828 "X86: Avoid using _chkstk when lowering WIN_ALLOCA instructions"
with an additional fix to make RegAllocFast ignore undef physreg uses. It would
previously get confused about the "push %eax" instruction's use of eax. That
method for adjusting the stack pointer is used in X86FrameLowering::emitSPUpdate
as well, but since that runs after register-allocation, we didn't run into the
RegAllocFast issue before.

llvm-svn: 269949
2016-05-18 16:10:17 +00:00
Hans Wennborg 759af30109 Revert r269828 "X86: Avoid using _chkstk when lowering WIN_ALLOCA instructions"
Seems to have broken the Windows ASan bot. Reverting while investigating.

llvm-svn: 269833
2016-05-17 20:38:56 +00:00
Hans Wennborg c3fb51171e X86: Avoid using _chkstk when lowering WIN_ALLOCA instructions
This patch moves the expansion of WIN_ALLOCA pseudo-instructions
into a separate pass that walks the CFG and lowers the instructions
based on a conservative estimate of the offset between the stack
pointer and the lowest accessed stack address.

The goal is to reduce binary size and run-time costs by removing
calls to _chkstk. While it doesn't fix all the code quality problems
with inalloca calls, it's an incremental improvement for PR27076.

Differential Revision: http://reviews.llvm.org/D20263

llvm-svn: 269828
2016-05-17 20:13:29 +00:00
Reid Kleckner 65f9d9cd32 Revert "[X86] Elide references to _chkstk for dynamic allocas"
This reverts commit r262370.

It turns out there is code out there that does sequences of allocas
greater than 4K: http://crbug.com/591404

The goal of this change was to improve the code size of inalloca call
sequences, but we got tangled up in the mess of dynamic allocas.
Instead, we should come back later with a separate MI pass that uses
dominance to optimize the full sequence. This should also be able to
remove the often unneeded stacksave/stackrestore pairs around the call.

llvm-svn: 262505
2016-03-02 19:20:59 +00:00
David Majnemer 791b88b6da [X86] Elide references to _chkstk for dynamic allocas
The _chkstk function is called by the compiler to probe the stack in an
order consistent with Windows' expectations.  However, it is possible to
elide the call to _chkstk and manually adjust the stack pointer if we
can prove that the allocation is fixed size and smaller than the probe
size.

This shrinks chrome.dll, chrome_child.dll and chrome.exe by a
cummulative ~133 KB.

Differential Revision: http://reviews.llvm.org/D17679

llvm-svn: 262370
2016-03-01 19:20:23 +00:00
David Blaikie 79e6c74981 [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786
2015-02-27 19:29:02 +00:00
Michael Kuperstein c69bb43f35 [X86] Convert esp-relative movs of function arguments into pushes, step 1
This handles the simplest case for mov -> push conversion:
1. x86-32 calling convention, everything is passed through the stack.
2. There is no reserved call frame.
3. Only registers or immediates are pushed, no attempt to combine a mem-reg-mem sequence into a single PUSHmm.

Differential Revision: http://reviews.llvm.org/D6503

llvm-svn: 223757
2014-12-09 06:10:44 +00:00
David Majnemer c4ab61cb2f IR: Change inalloca's grammar a bit
The grammar for LLVM IR is not well specified in any document but seems
to obey the following rules:

 - Attributes which have parenthesized arguments are never preceded by
   commas.  This form of attribute is the only one which ever has
   optional arguments.  However, not all of these attributes support
   optional arguments: 'thread_local' supports an optional argument but
   'addrspace' does not.  Interestingly, 'addrspace' is documented as
   being a "qualifier".  What constitutes a qualifier?  I cannot find a
   definition.

 - Some attributes use a space between the keyword and the value.
   Examples of this form are 'align' and 'section'.  These are always
   preceded by a comma.

 - Otherwise, the attribute has no argument.  These attributes do not
   have a preceding comma.

Sometimes an attribute goes before the instruction, between the
instruction and it's type, or after it's type.  'atomicrmw' has
'volatile' between the instruction and the type while 'call' has 'tail'
preceding the instruction.

With all this in mind, it seems most consistent for 'inalloca' on an
'inalloca' instruction to occur before between the instruction and the
type.  Unlike the current formulation, there would be no preceding
comma.  The combination 'alloca inalloca' doesn't look particularly
appetizing, perhaps a better spelling of 'inalloca' is down the road.

llvm-svn: 203376
2014-03-09 06:41:58 +00:00
Reid Kleckner f5b76518c9 Implement inalloca codegen for x86 with the new inalloca design
Calls with inalloca are lowered by skipping all stores for arguments
passed in memory and the initial stack adjustment to allocate argument
memory.

Now the frontend is responsible for the memory layout, and the backend
doesn't have to do any work.  As a result these changes are pretty
minimal.

Reviewers: echristo

Differential Revision: http://llvm-reviews.chandlerc.com/D2637

llvm-svn: 200596
2014-01-31 23:50:57 +00:00