RegInfoBasedABI::GetRegisterInfoByName was failing because mips/mips64 ABIs
don't use ConstString in their register info array.
Reviewed By: #lldb, teemperor
Differential Revision: https://reviews.llvm.org/D88375
When a Mach-O corefile has an LC_NOTE "main bin spec" for a
standalone binary / firmware, with only a UUID and no load
address, try to locate the binary and dSYM by UUID and if
found, load it at offset 0 for the user.
Add a test case that tests a firmware/standalone corefile
with both the "kern ver str" and "main bin spec" LC_NOTEs.
<rdar://problem/68193804>
Differential Revision: https://reviews.llvm.org/D88282
Every call to the protected SBAddress constructor and the SetAddress
method takes the address of a valid object which means we might as well
pass it as a const reference instead of a pointer and drop the null
check.
Differential revision: https://reviews.llvm.org/D88249
Recently https://reviews.llvm.org/D88103 introduced a nice API for
converting a JSON object into C++ types, which include nice error
messaging.
I'm using that new functioniality to perform the parsing in a much more
elegant way. As a result, the code looks simpler and more maintainable,
as we aren't parsing anymore individual fields manually.
I updated the test cases accordingly.
Differential Revision: https://reviews.llvm.org/D88264
The OS version field is generally not very helpful for non-Darwin
targets. On Linux, it identifies the kernel version which moves
out-of-sync with the userspace. On Windows, this field actually ends up
corresponding to the Visual Studio toolset version instead of the OS
version. Consider non-Darwin targets without an OS version to be fully
specified.
Differential Revision: https://reviews.llvm.org/D88181
Reviewed By: Jonas Devlieghere, Dave Lee
Translating between JSON objects and C++ strutctures is common.
From experience in clangd, fromJSON/ObjectMapper work well and save a lot of
code, but aren't adopted elsewhere at least partly due to total lack of error
reporting beyond "ok"/"bad".
The recently-added error model should be rich enough for most applications.
It requires tracking the path within the root object and reporting local
errors at appropriate places.
To do this, we exploit the fact that the call graph of recursive
parse functions mirror the structure of the JSON itself.
The current path is represented as a linked list of segments, each of which is
on the stack as a parameter. Concretely, fromJSON now looks like:
bool fromJSON(const Value&, T&, Path);
Beyond the signature change, this is reasonably unobtrusive: building
the path segments is mostly handled by ObjectMapper and the vector<T> fromJSON.
However the root caller of fromJSON must now create a Root object to
store the errors, which is a little clunky.
I've added high-level parse<T>(StringRef) -> Expected<T>, but it's not
general enough to be the primary interface I think (at least, not usable in
clangd).
All existing users (mostly just clangd) are updated in this patch,
making this change backwards-compatible is a bit hairy.
Differential Revision: https://reviews.llvm.org/D88103
Add an optimal thread strategy to execute specified amount of tasks.
This strategy should prevent us from creating too many threads if we
occasionaly have an unexpectedly small amount of tasks.
Differential Revision: https://reviews.llvm.org/D87765
When the various methods of locating the module in GetRemoteSharedModule
fail, make sure we pass the original module spec to the bail-out call to
the provided resolver function.
Also make sure we consistently use the resolved module spec from the
various success paths.
Thanks to what appears to have been an accidentally inverted condition
(commit 85967fa applied the new condition to a path where GetModuleSpec
returns false, but should have applied it when GetModuleSpec returns
true), without this fix we only pass the original module spec in the
fallback if the original spec has no uuid (or has a uuid that somehow
matches the resolved module's uuid despite the call to GetModuleSpec
failing). This manifested as a bug when processing a minidump file with
a user-provided sysroot, since in that case the resolver call was being
applied to resolved_module_spec (despite resolution failing), which did
not have the path of its file_spec set.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D88099
Clang has some type sugar that only serves as a way to preserve the way a user
has typed a certain type in the source code. These types are currently not
unwrapped when we query the type name for a Clang type, which means that this
type sugar actually influences what formatters are picked for a certain type.
Currently if a user decides to reference a type by doing `::GlobalDecl Var = 3;`,
the type formatter for `GlobalDecl` will not be used (as the type sugar
around the type gives it the name `::GlobalDecl`. The same goes for other ways
to spell out a type such as `auto` etc.
With this patch most of this type sugar gets stripped when the full type name is
calculated. Typedefs are not getting desugared as that seems counterproductive.
I also don't desugar atomic types as that's technically not type sugar.
Reviewed By: jarin
Differential Revision: https://reviews.llvm.org/D87481
There was a little thinko which meant when stopped in a frame with
debug information but whose CU didn't have any global variables we
report:
no debug info for frame <N>
This patch fixes that error message to say the intended:
no global variables in current compile unit
<rdar://problem/69086361>
This is the first in a series of patches that will adds a new processor trace plug-in to LLDB.
The idea for this first patch to to add the plug-in interface with simple commands for the trace files that can "load" and "dump" the trace information. We can test the functionality and ensure people are happy with the way things are done and how things are organized before moving on to adding more functionality.
Processor trace information can be view in a few different ways:
- post mortem where a trace is saved off that can be viewed later in the debugger
- gathered while a process is running and allow the user to step back in time (with no variables, memory or registers) to see how each thread arrived at where it is currently stopped.
This patch attempts to start with the first solution of loading a trace file after the fact. The idea is that we will use a JSON file to load the trace information. JSON allows us to specify information about the trace like:
- plug-in name in LLDB
- path to trace file
- shared library load information so we can re-create a target and symbolicate the information in the trace
- any other info that the trace plug-in will need to be able to successfully parse the trace information
- cpu type
- version info
- ???
A new "trace" command was added at the top level of the LLDB commmands:
- "trace load"
- "trace dump"
I did this because if we load trace information we don't need to have a process and we might end up creating a new target for the trace information that will become active. If anyone has any input on where this would be better suited, please let me know. Walter Erquinigo will end up filling in the Intel PT specific plug-in so that it works and is tested once we can agree that the direction of this patch is the correct one, so please feel free to chime in with ideas on comments!
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D85705
Update the some examples in the help string for `breakpoint command add`.
Python breakpoint commands have different output than what's shown in the help string.
Notes:
* Removed an example containing an inner function, as it seems more about a Python technique than about `command script add`
* Updated `print x` to `print(x)` to be python 2/3 agnostic
Differential Revision: https://reviews.llvm.org/D87807
Previously when <addr> in "memory region <addr>" didn't
parse correctly, we'd print an error then also ask lldb-server
for a region containing LLDB_INVALID_ADDRESS.
(lldb) memory region not_an_address
error: invalid address argument "not_an_address"...
error: Server returned invalid range
Only send the command to lldb-server if the address
parsed correctly.
(lldb) memory region not_an_address
error: invalid address argument "not_an_address"...
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D87694
Perform all error handling in ReadCode()
Add :help text describing “< path”, add extra line before Commands
Differential Revision: https://reviews.llvm.org/D87640
Code was added that used llvm error checking to parse .debug_aranges, but the error check after parsing the DWARFDebugArangesSet was reversed and was causing no error to be returned with no valid address ranges being actually used. This meant we always would fall back onto creating out own address ranges by parsing the compile unit's ranges. This was causing problems for cases where the DW_TAG_compile_unit had a single address range by using a DW_AT_low_pc and DW_AT_high_pc attribute pair (not using a DW_AT_ranges attribute), but the .debug_aranges had correct split ranges. In this case we would end up using the single range for the compile unit that encompassed all of the ranges from the .debug_aranges section and would cause address resolving issues in LLDB where address lookups would fail for certain addresses.
Differential Revision: https://reviews.llvm.org/D87626
Make it possible to run the script command with a different language
than currently selected.
$ ./bin/lldb -l python
(lldb) script -l lua
>>> io.stdout:write("Hello, World!\n")
Hello, World!
When passing the language option and a raw command, you need to separate
the flag from the script code with --.
$ ./bin/lldb -l python
(lldb) script -l lua -- io.stdout:write("Hello, World!\n")
Hello, World!
Differential revision: https://reviews.llvm.org/D86996
qemu calls the "fp" and "lr" registers via their generic names
(x29/x30). This mismatch manifested itself as not being able to unwind
or display values of some local variables.
In MinGW world, UNIX like lib prefix is preferred for the libraries.
This patch adjusts CMake files to do that.
Differential Revision: https://reviews.llvm.org/D87517
On macOS Big Sur the class descriptor contains the NSKVONotifying_
prefix. This is covered by TestDataFormatterObjCKVO.
Differential revision: https://reviews.llvm.org/D87545
This patch adds a way to fetch breakpoint metadatas as a serialized
`Structured` Data format (JSON). This can be used by IDEs to update
their UI when a breakpoint is set or modified from the console.
rdar://11013798
Differential Revision: https://reviews.llvm.org/D87491
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This adds support for substituting std::pair instantiations with enabled
import-std-module.
With the fixes in parent revisions we can currently substitute a single pair
(however, a result that returns a second pair currently causes LLDB to crash
while importing the second template instantiation).
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D85141
The ASTImporter has an `Imported(From, To)` callback that notifies subclasses
that a declaration has been imported in some way. LLDB uses this in the
`CompleteTagDeclsScope` to see which records have been imported into the scratch
context. If the record was declared inside the expression, then the
`CompleteTagDeclsScope` will forcibly import the full definition of that record
to the scratch context so that the expression AST can safely be disposed later
(otherwise we might end up going back to the deleted AST to complete the
minimally imported record). The way this is implemented is that there is a list
of decls that need to be imported (`m_decls_to_complete`) and we keep completing
the declarations inside that list until the list is empty. Every `To` Decl we
get via the `Imported` callback will be added to the list of Decls to be
completed.
There are some situations where the ASTImporter will actually give us two
`Imported` calls with the same `To` Decl. One way where this happens is if the
ASTImporter decides to merge an imported definition into an already imported
one. Another way is that the ASTImporter just happens to get two calls to
`ASTImporter::Import` for the same Decl. This for example happens when importing
the DeclContext of a Decl requires importing the Decl itself, such as when
importing a RecordDecl that was declared inside a function.
The bug addressed in this patch is that when we end up getting two `Imported`
calls for the same `To` Decl, then we would crash in the
`CompleteTagDeclsScope`. That's because the first time we complete the Decl we
remove the Origin tracking information (that maps the Decl back to from where it
came from). The next time we try to complete the same `To` Decl the Origin
tracking information is gone and we hit the `to_context_md->getOrigin(decl).ctx
== m_src_ctx` assert (`getOrigin(decl).ctx` is a nullptr the second time as the
Origin was deleted).
This is actually a regression coming from D72495. Before D72495
`m_decls_to_complete` was actually a set so every declaration in there could
only be queued once to be completed. The set was changed to a vector to make the
iteration over it deterministic, but that also causes that we now potentially
end up trying to complete a Decl twice.
This patch essentially just reverts D72495 and makes the `CompleteTagDeclsScope`
use a SetVector for the list of declarations to be completed. The SetVector
should filter out the duplicates (as the original `set` did) and also ensure that
the completion order is deterministic. I actually couldn't find any way to cause
LLDB to reproduce this bug by merging declarations (this would require that we
for example declare two namespaces in a non-top-level expression which isn't
possible). But the bug reproduces very easily by just declaring a class in an
expression, so that's what the test is doing.
Reviewed By: shafik
Differential Revision: https://reviews.llvm.org/D85648
SemaSourceWithPriorities is a special SemaSource that wraps our normal LLDB
ExternalASTSource and the ASTReader (which is used for the C++ module loading).
It's only active when the `import-std-module` setting is turned on.
The `CompleteType` function there in `SemaSourceWithPriorities` is looping over
all ExternalASTSources and asks each to complete the type. However, that loop is
in another loop that keeps doing that until the type is complete. If that
function is ever called on a type that is a forward decl then that causes LLDB
to go into an infinite loop.
I remember I added that second loop and the comment because I thought I saw a
similar pattern in some other Clang code, but after some grepping I can't find
that code anywhere and it seems the rest of the code base only calls
CompleteType once (It would also be kinda silly to have calling it multiple
times). So it seems that's just a silly mistake.
The is implicitly tested by importing `std::pair`, but I also added a simpler
dedicated test that creates a dummy libc++ module with some forward declarations
and then imports them into the scratch AST context. At some point the
ASTImporter will check if one of the forward decls could be completed by the
ExternalASTSource, which will cause the `SemaSourceWithPriorities` to go into an
infinite loop once it receives the `CompleteType` call.
Reviewed By: shafik
Differential Revision: https://reviews.llvm.org/D87289
This patch removes register set definitions and other redundant code from
NativeRegisterContextLinux/RegisterContextPOSIX*_arm. Register sets are now
moved under RegisterInfosPOSIX_arm which now uses RegisterInfoAndSetInterface.
This is similar to what we earlier did for AArch64.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D86962
This reverts commit f369d51896. The bug this
fixes was already fixed by 1c5a0cb1c3 with the
same approach and this commit is now just giving the variable a second fallback
value.
The tests are unsupported on linux, but they assert in
Thread::GetStopDescriptionRaw() because of empty stop reason
description. And it is empty because
InstrumentationRuntimeTSan::NotifyBreakpointHit() fails
to get report from InstrumentationRuntimeTSan::RetrieveReportData(),
which is possibly(?) the reason why this is unsupported on linux.
Add a dummy stop reason description for this case, which changes
the test result from failing to unsupported.
Previously, before loading the REPL language-specific init file, lldb
checked the selected target language in which case it returned an unknown
language type with the REPL target.
Instead, the patch calls `Language::GetLanguagesSupportingREPLs` and
look for the first element of that set. In case lldb was not configured
with a REPL language, then, it will just stop sourcing the REPL init
file and fallback to the original logic (continuing with the default
init file).
rdar://65836048
Differential Revision: https://reviews.llvm.org/D87076
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
`image dump symtab` seems to output the symbols in whatever order they appear in
the DenseMap that is used to filter out symbols with non-unique addresses. As
DenseMap is a hash map this order can change at any time so the output of this
command is pretty unstable. This also causes the `Breakpad/symtab.test` to fail
with enabled reverse iteration (which reverses the DenseMap order to find issues
like this).
This patch makes the DenseMap a std::vector and uses a separate DenseSet to do
the address filtering. The output order is now dependent on the order in which
the symbols are read (which should be deterministic). It might also avoid a bit
of work as all the work for creating the Symbol constructor parameters is only
done when we can actually emplace a new Symbol.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D87036
Add a reproducer verifier that catches:
- Missing or invalid home directory
- Missing or invalid working directory
- Missing or invalid module/symbol paths
- Missing files from the VFS
The verifier is enabled by default during replay, but can be skipped by
passing --reproducer-no-verify.
Differential revision: https://reviews.llvm.org/D86497
When compiling an Objective-C++ file, __has_feature(cxx_exceptions) will
return true with -fno-exceptions but without -fno-objc-exceptions. This
was causing LLVM_ENABLE_EXCEPTIONS to be defined for a subset of files.
This is currently causing msan warnings in the API tests when run under msan, e.g. `commands/gui/basic/TestGuiBasic.py`.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D86825
The /proc/<pid>/status parsing is missing a few cases:
- Idle
- Parked
- Dead
If we encounter an unknown proc state, this leads to an msan warning. In reality, we only check that the state != Zombie, so it doesn't really matter that we handle all cases, but handle them anyway (current list: [1]). Also explicitly set it to unknown if we encounter an unknown state. There will still be an msan warning if the proc entry has no `State:` line, but that should not happen.
Use a StringSwitch to make the handling of proc states a little more compact.
[1] https://github.com/torvalds/linux/blob/master/fs/proc/array.c
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D86818
This patch adds the ability to use a custom interpreter with the
`platform shell` command. If the user set the `-s|--shell` option
with the path to a binary, lldb passes it down to the platform's
`RunShellProcess` method and set it as the shell to use in
`ProcessLaunchInfo to run commands.
Note that not all the Platforms support running shell commands with
custom interpreters (i.e. RemoteGDBServer is only expected to use the
default shell).
This patch also makes some refactoring and cleanups, like swapping
CString for StringRef when possible and updating `SBPlatformShellCommand`
with new methods and a new constructor.
rdar://67759256
Differential Revision: https://reviews.llvm.org/D86667
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Move the CommandObjectScript and CommandObjectRegexCommand under
Commands where all the other CommandObject implementations live.
Although neither implementations currently use the TableGen-generated
CommandOptions.inc, this move would have been necessary anyway if they
were to in the future.
This patch changes the command interpreter sourcing logic for the REPL
init file. Instead of looking for a arbitrary file name, it standardizes
the REPL init file name to match to following scheme:
`.lldbinit-<language>-repl`
This will make the naming more homogenous and the sourcing logic future-proof.
rdar://65836048
Differential Revision: https://reviews.llvm.org/D86987
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Currently it is hard to avoid having LLVM link to the system install of
ncurses, since it uses check_library_exists to find e.g. libtinfo and
not find_library or find_package.
With this change the ncurses lib is found with find_library, which also
considers CMAKE_PREFIX_PATH. This solves an issue for the spack package
manager, where we want to use the zlib installed by spack, and spack
provides the CMAKE_PREFIX_PATH for it.
This is a similar change as https://reviews.llvm.org/D79219, which just
landed in master.
Patch By: haampie
Differential Revision: https://reviews.llvm.org/D85820
Add a reproducer verifier that catches:
- Missing or invalid home directory
- Missing or invalid working directory
- Missing or invalid module/symbol paths
- Missing files from the VFS
The verifier is enabled by default during replay, but can be skipped by
passing --reproducer-no-verify.
Differential revision: https://reviews.llvm.org/D86497
1. Added a dedicated completion to class `CommandObjectTypeFormatterDelete`
which can be used by these commands: `type filter/format/summary/synthetic delete`;
2. Added a related test case.
Reviewed By: teemperor
Differential Revision: https://reviews.llvm.org/D84142
Right now all tsan tests are crashing on Linux. The tests were already marked as
expected failures, but since commit 20ce8affce added an assert that every
StopInfo needs a non-empty stop description the tests actually started crash
(which is even with an expectedFailure a failed test).
The reason for that is that we never had any stop description when hitting tsan
errors on Linux. Before the assert that just made the test fail, but now the
empty description is hitting the assert. This patch just adds a generic stop
description mentioning tsan to prevent that we hit that assert on platforms
where we don't support extracting the tsan report.
Reviewed By: friss
Differential Revision: https://reviews.llvm.org/D86593
This patch is mostly about removing the "Category" enum, which was
very useful when the Type enum contained a large number of types, but
now the two are completely identical.
It also removes some other artifacts like unused typedefs and macros.
The introduction of find_library for ncurses caused more issues than it solved problems. The current open issue is it makes the static build of LLVM fail. It is better to revert for now, and get back to it later.
Revert "[CMake] Fix an issue where get_system_libname creates an empty regex capture on windows"
This reverts commit 1ed1e16ab8.
Revert "Fix msan build"
This reverts commit 34fe9613dd.
Revert "[CMake] Always mark terminfo as unavailable on Windows"
This reverts commit 76bf26236f.
Revert "[CMake] Fix OCaml build failure because of absolute path in system libs"
This reverts commit 8e4acb82f7.
Revert "[CMake] Don't look for terminfo libs when LLVM_ENABLE_TERMINFO=OFF"
This reverts commit 495f91fd33.
Revert "Use find_library for ncurses"
This reverts commit a52173a3e5.
Differential revision: https://reviews.llvm.org/D86521
The function was returning an incorrect (empty) value on the first
invocation. Given that this only affected the first invocation, this
bug/typo went mostly unaffected. DW_AT_const_value were particularly
badly affected by this as the GetByteSize call is
SymbolFileDWARF::ParseVariableDIE is likely to be the first call of this
function, and its effects cannot be undone by retrying.
Depends on D86348.
Differential Revision: https://reviews.llvm.org/D86436
Class-level static constexpr variables can have both DW_AT_const_value
(in the "declaration") and a DW_AT_location (in the "definition")
attributes. Our code was trying to handle this, but it was brittle and
hard to follow (and broken) because it was processing the attributes in
the order in which they were found.
Refactor the code to make the intent clearer -- DW_AT_location trumps
DW_AT_const_value, and fix the bug which meant that we were not
displaying these variables properly (the culprit was the delayed parsing
of the const_value attribute due to a need to fetch the variable type.
Differential Revision: https://reviews.llvm.org/D86615
Specify type when constructing PromotionKeys,
this fixes error:
"chosen constructor is explicit in copy-initialization"
when compiling lldb with GCC 5.4.0.
This is due to std::tuple having an explicit
default constructor, see:
http://cplusplus.github.io/LWG/lwg-defects.html#2193
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D86690
Breakpad creates minidump files that can a module loaded multiple times. We found that when a process mmap's the object file for a library, this can confuse breakpad into creating multiple modules in the module list. This patch fixes the GetFilteredModules() to check the linux maps for permissions and use the one that has execute permissions. Typically when people mmap a file into memory they don't map it as executable. This helps people to correctly load minidump files for post mortem analysis.
Differential Revision: https://reviews.llvm.org/D86375
This fixes several issues in handling of DW_AT_const_value attributes:
- the first is that the size of the data given by data forms does not
need to match the size of the underlying variable. We already had the
case to handle this for DW_FORM_(us)data -- this extends the handling
to other data forms. The main reason this was not picked up is because
clang uses leb forms in these cases while gcc prefers the fixed-size
ones.
- The handling of DW_AT_strp form was completely broken -- we would end
up using the pointer value as the result. I've reorganized this code
so that it handles all string forms uniformly.
- In case of a completely bogus form we would crash due to
strlen(nullptr).
Depends on D86311.
Differential Revision: https://reviews.llvm.org/D86348
Update the "image show-unwind" command output to show if the function
being shown is listed as a user-setting or platform trap handler.
Update the individual UnwindPlan dumps to show whether the unwind plan
is registered as a trap handler.
There was typo left from changes in CalculateSVEOffset where we moved
FPSR/FPCR offset calculation into WriteRegister and ReadRegister.
Differential Revision: https://reviews.llvm.org/D79699
In some cases when we have a DW_AT_const_value and the data can be found in the
DWARFExpression then ValueObjectVariable does not handle it properly and we end
up with an extracting data from value failed error.
The test is a very stripped down assembly file since reproducing this relies on the results of compiling with -O1 which may not be stable over time.
Differential Revision: https://reviews.llvm.org/D86311
When replaying a reproducer captured from a core file, we always use
dsymForUUID for the kernel binary. When enabled, we also use it to find
kexts. Since these files are already contained in the reproducer,
there's no reason to call out to an external tool. If the tool returns a
different result, e.g. because the dSYM got garbage collected, it will
break reproducer replay. The SymbolFileProvider solves the issue by
mapping UUIDs to module and symbol paths in the reproducer.
Differential revision: https://reviews.llvm.org/D86389
Breakpad will always have a UUID for binaries when it creates minidump files. If an ELF files has a GNU build ID, it will use that. If it doesn't, it will create one by hashing up to the first 4096 bytes of the .text section. LLDB was not able to load these binaries even when we had the right binary because the UUID didn't match. LLDB will use the GNU build ID first as the main UUID for a binary and fallback onto a 8 byte CRC if a binary doesn't have one. With this fix, we will check for the Breakpad hash or the Facebook hash (a modified version of the breakpad hash that collides a bit less) and accept binaries when these hashes match.
Differential Revision: https://reviews.llvm.org/D86261
1. Added a new common completion TypeCategoryNames to provide a list of category names for completion;
2. Applied the completion to these commands: type category delete/enable/disable/list/define;
3. Added a related test case;
4. Bound the completion to the arguments of the type 'eArgTypeName'.
Reviewed By: teemperor, JDevlieghere
Differential Revision: https://reviews.llvm.org/D84124
1. Extended the gdb-remote communication related classes with disk file/directory
completion functions;
2. Added two common completion functions RemoteDiskFiles and
RemoteDiskDirectories based on the functions above;
3. Added completion for these commands:
A. platform get-file <remote-file> <local-file>;
B. platform put-file <local-file> <remote-file>;
C. platform get-size <remote-file>;
D. platform settings -w <remote-dir>;
E. platform open file <remote-file>.
4. Added related tests for client and server;
5. Updated docs/lldb-platform-packets.txt.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D85284
1. Added two common completions: `ProcessIDs` and `ProcessNames`, which are
refactored from their original dedicated option completions;
2. Removed the dedicated option completion functions of `process attach` and
`platform process attach`, so that they can use arg-type-bound common
completions instead;
3. Bound `eArgTypePid` to the pid completion, `eArgTypeProcessName` to the
process name completion in `CommandObject.cpp`;
4. Added a related test case.
Reviewed By: teemperor
Differential Revision: https://reviews.llvm.org/D80700
Extract all the provider related logic from Reproducer.h and move it
into its own header ReproducerProvider.h. These classes are seeing most
of the development these days and this reorganization reduces
incremental compilation from ~520 to ~110 files when making changes to
the new header.
When `Target::GetEntryPointAddress()` calls `exe_module->GetObjectFile()->GetEntryPointAddress()`, and the returned
`entry_addr` is valid, it can immediately be returned.
However, just before that, an `llvm::Error` value has been setup, but in this case it is not consumed before returning, like is done further below in the function.
In https://bugs.freebsd.org/248745 we got a bug report for this, where a very simple test case aborts and dumps core:
```
* thread #1, name = 'testcase', stop reason = breakpoint 1.1
frame #0: 0x00000000002018d4 testcase`main(argc=1, argv=0x00007fffffffea18) at testcase.c:3:5
1 int main(int argc, char *argv[])
2 {
-> 3 return 0;
4 }
(lldb) p argc
Program aborted due to an unhandled Error:
Error value was Success. (Note: Success values must still be checked prior to being destroyed).
Thread 1 received signal SIGABRT, Aborted.
thr_kill () at thr_kill.S:3
3 thr_kill.S: No such file or directory.
(gdb) bt
#0 thr_kill () at thr_kill.S:3
#1 0x00000008049a0004 in __raise (s=6) at /usr/src/lib/libc/gen/raise.c:52
#2 0x0000000804916229 in abort () at /usr/src/lib/libc/stdlib/abort.c:67
#3 0x000000000451b5f5 in fatalUncheckedError () at /usr/src/contrib/llvm-project/llvm/lib/Support/Error.cpp:112
#4 0x00000000019cf008 in GetEntryPointAddress () at /usr/src/contrib/llvm-project/llvm/include/llvm/Support/Error.h:267
#5 0x0000000001bccbd8 in ConstructorSetup () at /usr/src/contrib/llvm-project/lldb/source/Target/ThreadPlanCallFunction.cpp:67
#6 0x0000000001bcd2c0 in ThreadPlanCallFunction () at /usr/src/contrib/llvm-project/lldb/source/Target/ThreadPlanCallFunction.cpp:114
#7 0x00000000020076d4 in InferiorCallMmap () at /usr/src/contrib/llvm-project/lldb/source/Plugins/Process/Utility/InferiorCallPOSIX.cpp:97
#8 0x0000000001f4be33 in DoAllocateMemory () at /usr/src/contrib/llvm-project/lldb/source/Plugins/Process/FreeBSD/ProcessFreeBSD.cpp:604
#9 0x0000000001fe51b9 in AllocatePage () at /usr/src/contrib/llvm-project/lldb/source/Target/Memory.cpp:347
#10 0x0000000001fe5385 in AllocateMemory () at /usr/src/contrib/llvm-project/lldb/source/Target/Memory.cpp:383
#11 0x0000000001974da2 in AllocateMemory () at /usr/src/contrib/llvm-project/lldb/source/Target/Process.cpp:2301
#12 CanJIT () at /usr/src/contrib/llvm-project/lldb/source/Target/Process.cpp:2331
#13 0x0000000001a1bf3d in Evaluate () at /usr/src/contrib/llvm-project/lldb/source/Expression/UserExpression.cpp:190
#14 0x00000000019ce7a2 in EvaluateExpression () at /usr/src/contrib/llvm-project/lldb/source/Target/Target.cpp:2372
#15 0x0000000001ad784c in EvaluateExpression () at /usr/src/contrib/llvm-project/lldb/source/Commands/CommandObjectExpression.cpp:414
#16 0x0000000001ad86ae in DoExecute () at /usr/src/contrib/llvm-project/lldb/source/Commands/CommandObjectExpression.cpp:646
#17 0x0000000001a5e3ed in Execute () at /usr/src/contrib/llvm-project/lldb/source/Interpreter/CommandObject.cpp:1003
#18 0x0000000001a6c4a3 in HandleCommand () at /usr/src/contrib/llvm-project/lldb/source/Interpreter/CommandInterpreter.cpp:1762
#19 0x0000000001a6f98c in IOHandlerInputComplete () at /usr/src/contrib/llvm-project/lldb/source/Interpreter/CommandInterpreter.cpp:2760
#20 0x0000000001a90b08 in Run () at /usr/src/contrib/llvm-project/lldb/source/Core/IOHandler.cpp:548
#21 0x00000000019a6c6a in ExecuteIOHandlers () at /usr/src/contrib/llvm-project/lldb/source/Core/Debugger.cpp:903
#22 0x0000000001a70337 in RunCommandInterpreter () at /usr/src/contrib/llvm-project/lldb/source/Interpreter/CommandInterpreter.cpp:2946
#23 0x0000000001d9d812 in RunCommandInterpreter () at /usr/src/contrib/llvm-project/lldb/source/API/SBDebugger.cpp:1169
#24 0x0000000001918be8 in MainLoop () at /usr/src/contrib/llvm-project/lldb/tools/driver/Driver.cpp:675
#25 0x000000000191a114 in main () at /usr/src/contrib/llvm-project/lldb/tools/driver/Driver.cpp:890```
Fix the incorrect error catch by only instantiating an `Error` object if it is necessary.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D86355
1. Complete `process load` with the common disk file completion, so there is not test provided for it;
2. Complete `process unload` with the tokens of valid loaded images.
Thanks for Raphael's help on the test for `process unload`.
Reviewed By: teemperor
Differential Revision: https://reviews.llvm.org/D79887
When replaying the reproducer, lldb should source the .lldbinit file
that was captured by the reproducer and not the one in the current home
directory. This requires that we store the home directory as part of the
reproducer. By returning the virtual home directory during replay, we
ensure the correct virtual path gets constructed which the VFS can then
find and remap to the correct file in the reproducer root.
This patch adds a new HomeDirectoryProvider, similar to the existing
WorkingDirectoryProvider. As the home directory is not part of the VFS,
it is stored in LLDB's FileSystem instance.
The FileSystem initialization depends on the reproducer mode. It has
been growing organically to the point where it deserves its own helper
function. This also allows for early returns to simplify the code.
Provider a wrapper around llvm::sys::path::home_directory in the
FileSystem class. This will make it possible for the reproducers to
intercept the call in a central place.
1. created a common completion for breakpoint names;
2. bound the breakpoint name common completion with eArgTypeBreakpointName;
3. implemented the dedicated completion for breakpoint read -N.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D80693
Similarly to D85836, collapse all Scalar float types to a single enum
value, and use APFloat semantics to differentiate between. This
simplifies the code, and opens to door to supporting other floating
point semantics (which would be needed for fully supporting
architectures with more interesting float types such as PPC).
Differential Revision: https://reviews.llvm.org/D86220
This is very similar to D85968, only more elusive to since we were not
adding the typedef type to the relevant DeclContext until D86140, which
meant that the DeclContext was populated (and the relevant assertion
hit) only after importing the type into the expression ast in a
particular way.
I haven't checked whether this situation can be hit in the gmodules
case, but my money is on "yes".
Differential Revision: https://reviews.llvm.org/D86216
This patch adds the infrastructure to have language specific REPL init
files. It's the foundation work to a following patch that will introduce
Swift REPL init file.
When lldb is launched with the `--repl` option, it will look for a REPL
init file in the home directory and source it. This overrides the
default `~/.lldbinit`, which content might make the REPL behave
unexpectedly. If the REPL init file doesn't exists, lldb will fall back
to the default init file.
rdar://65836048
Differential Revision: https://reviews.llvm.org/D86242
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
TypeSystemClang::CreateTypedef was creating a typedef in the right
DeclContext, but it was not actually adding it as a child of the
context. The resulting inconsistent state meant that we would be unable
to reference the typedef from an expression directly, but we could use
them if they end up being pulled in by some previous subexpression
(because the ASTImporter will set up the correct links in the expression
ast).
This patch adds the typedef to the decl context it is created in.
Differential Revision: https://reviews.llvm.org/D86140
This patch adds NativeRegisterContext_arm64 ptrace routines to access
AArch64 SVE register set. This patch also adds a test-case to test
AArch64 SVE register access and dynamic size configuration capability.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D79699
In our discussion D79699 SVE ptrace register access support we decide to
invalidate register context cached data on every stop instead of doing
at before Step/Resume.
InvalidateAllRegisters was added to facilitate flushing of SVE register
context configuration and cached register values. It now makes more
sense to move invalidation after every stop where we initiate SVE
configuration update if needed by calling ConfigureRegisterContext.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D84501
This patch updates LLDB's in house version of SVE ptrace/sig macros by
converting them into constants and inlines. They are housed under sve
namespace and are used by process elf-core for reading SVE register data.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D85641
Checking if an object file is in memory should use the ObjectFile::IsInMemory(), not test ObjectFile::BaseAddress(). ObjectFile::BaseAddress() is designed to be overridden by all classes and is for mach-o, ELF and COFF plug-ins. They find the header base adddress and return that as a section offset address. The default implementation of ObjectFile::BaseAddress() does try and make an Address() from the ObjectFile::m_memory_addr, but I switched it to a correct function call.
Differential Revision: https://reviews.llvm.org/D86122
Parsing DWARFv5 debug_loclist offsets when a CU is parsed is weighing
down memory usage of symbolizers that don't need to parse this data at
all. There's not much benefit to caching these anyway - since they are
O(1) lookup and reading once you know where the offset list starts (and
can do bounds checking with the offset list size too).
In general, I think it might be time to start paying down some of the
technical debt of loc/loclist/range/rnglist parsing to try to unify it a
bit more.
eg:
* Currently DWARFUnit has: RangeSection, RangeSectionBase, LocSection,
LocSectionBase, LocTable, RngListTable, LoclistTableHeader (be nice if
these were all wrapped up in two variables - one for loclists, one for
rnglists)
* rnglists and loclists are handled differently (see:
LoclistTableHeader, but no RnglistTableHeader)
* maybe all these types could be less stateful - lazily parse what they
need to, even reparsing rather than caching because it doesn't seem
too expensive, for instance. (though admittedly so long as it's
constantcost/overead per compilatiton that's probably adequate)
* Maybe implementing and using a DWARFDataExtractor that can be
sub-ranged (so we could slice it up to just the single contribution) -
though maybe that's not so useful because loc/ranges need to refer to
it by absolute, not contribution-relative mechanisms
Differential Revision: https://reviews.llvm.org/D86110
I intentionally decided not to reset the column automatically
anywhere, because I don't know where and if at all that should happen.
There should be always an indication of being scrolled (too much)
to the right, so I'll leave this to whoever has an opinion.
Differential Revision: https://reviews.llvm.org/D85290
Currently it is hard to avoid having LLVM link to the system install of
ncurses, since it uses check_library_exists to find e.g. libtinfo and
not find_library or find_package.
With this change the ncurses lib is found with find_library, which also
considers CMAKE_PREFIX_PATH. This solves an issue for the spack package
manager, where we want to use the zlib installed by spack, and spack
provides the CMAKE_PREFIX_PATH for it.
This is a similar change as https://reviews.llvm.org/D79219, which just
landed in master.
Differential revision: https://reviews.llvm.org/D85820
This patch is a big sed to rename the following variables:
s/PYTHON_LIBRARIES/Python3_LIBRARIES/g
s/PYTHON_INCLUDE_DIRS/Python3_INCLUDE_DIRS/g
s/PYTHON_EXECUTABLE/Python3_EXECUTABLE/g
s/PYTHON_RPATH/Python3_RPATH/g
I've also renamed the CMake module to better express its purpose and for
consistency with FindLuaAndSwig.
Differential revision: https://reviews.llvm.org/D85976
CreateFunctionDeclaration should just take a StringRef. GetDeclarationName is
(only) used by CreateFunctionDeclaration so that's why now also takes a
StringRef.
In D83876 the consensus seems that LLDB should never deleted orphaned modules
implicitly. However, SBDebugger::DeleteTarget is currently doing exactly that.
This code was added in 753406221b but I don't see
any explanation in the commit, so I think we should delete it.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D83933
The class contains an enum listing all host integer types as well as
some non-host types. This setup is a remnant of a time when this class
was actually implemented in terms of host integer types. Now that we are
using llvm::APInt, they are mostly useless and mean that each function
needs to enumerate all of these cases even though it treats most of them
identically.
I only leave e_sint and e_uint to denote the integer signedness, but I
want to remove that in a follow-up as well.
Removing these cases simplifies most of these functions, with the only
exception being PromoteToMaxType, which can no longer rely on a simple
enum comparison to determine what needs to be promoted.
This also makes the class ready to work with arbitrary integer sizes, so
it does not need to be modified when someone needs to add a larger
integer size.
Differential Revision: https://reviews.llvm.org/D85836
With -flimit-debug-info, we can run into cases when we only have a class
as a declaration, but we do have a definition of a nested class. In this
case, clang will hit an assertion when adding a member to an incomplete
type (but only if it's adding a c++ class, and not C struct).
It turns out we already had code to handle a similar situation arising
in the -gmodules scenario. This extends the code to handle
-flimit-debug-info as well, and reorganizes bits of other code handling
completion of types to move functions doing similar things closer
together.
Differential Revision: https://reviews.llvm.org/D85968
Right now the only places in the SB API where lldb:: ModuleSP instances are
destroyed are in SBDebugger::MemoryPressureDetected (where it's just attempted
but not guaranteed) and in SBDebugger::DeleteTarget (which will be removed in
D83933). Tests that directly create an lldb::ModuleSP and never create a target
therefore currently leak lldb::Module instances. This triggers the sanity checks
in lldbtest that make sure that the global module list is empty after a test.
This patch adds SBModule::GarbageCollectAllocatedModules as an explicit way to
clean orphaned lldb::ModuleSP instances. Also we now start calling this method
at the end of each test run and move the sanity check behind that call to make
this work. This way even tests that don't create targets can pass the sanity
check.
This fixes TestUnicodeSymbols.py when D83865 is applied (which makes that the
sanity checks actually fail the test).
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D83876
We didn't do anything with the llvm::Error we get from `Open`, so when we end up in the
error case we just crash due to the llvm::Error sanity check. Also add the missing newline
behind the error message so it no longer messes with the next (lldb) prompt.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D85970
This parameter isn't used anywhere in LLDB nor the Swift downstream branch. It
also doesn't really fit into the TypeSystem APIs that usually don't return
additional related functionality via some output parameters. Also the
implementations already states that the calculated value there is wrong.
Let's remove it. If we need this functionality at some point then Swift's much
nicer `GetByteStride` function seems like the way to go.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D84299
The search for the complete class definition can also produce entries
which are not of the expected type. This can happen for instance when
there is a function with the same name as the class we're looking up
(which means that the class needs to be disambiguated with the
struct/class tag in most contexts).
Previously we were just picking the first Decl that the lookup returned,
which later caused crashes or assertion failures if it was not of the
correct type. This patch changes that to search for an entry of the
correct type.
Differential Revision: https://reviews.llvm.org/D85904
There are two implementations for `TypeSystemMap::GetTypeSystemForLanguage`
which are both identical beside one taking a `Module` and one taking a `Target`
(and then passing that argument to the `TypeSystem::CreateInstance` function).
This merges both implementations into one function with a lambda that wraps the
different calls to `TypeSystem::CreateInstance`.
Reviewed By: #lldb, JDevlieghere
Differential Revision: https://reviews.llvm.org/D82537
This is relanding D81001. The patch originally failed as on newer editline
versions it seems CC_REFRESH will move the cursor to the start of the line via
\r and then back to the original position. On older editline versions like
the one used by default on macOS, CC_REFRESH doesn't move the cursor at all.
As the patch changed the way we handle tab completion (previously we did
REDISPLAY but now we're doing CC_REFRESH), this caused a few completion tests
to receive this unexpected cursor movement in the output stream.
This patch updates those tests to also accept output that contains the specific
cursor movement commands (\r and then \x1b[XC). lldbpexpect.py received an
utility method for generating the cursor movement escape sequence.
Original summary:
I implemented autosuggestion if there is one possible suggestion.
I set the keybinds for every character. When a character is typed, Editline::TypedCharacter is called.
Then, autosuggestion part is displayed in gray, and you can actually input by typing C-k.
Editline::Autosuggest is a function for finding completion, and it is like Editline::TabCommand now, but I will add more features to it.
Testing does not work well in my environment, so I can't confirm that it goes well, sorry. I am dealing with it now.
Reviewed By: teemperor, JDevlieghere, #lldb
Differential Revision: https://reviews.llvm.org/D81001
The function had very complicated signature, because it was trying to
avoid making unnecessary copies of the Scalar object. However, this
class is not hot enough to worry about these kinds of optimizations. My
making copies unconditionally, we can simplify the function and all of
its call sites.
Differential Revision: https://reviews.llvm.org/D85906
When LLDB sees only one possible completion for an input, it will add a trailing
space to the completion to signal that to the user. If the current argument is
quoted, that also means LLDB needs to add the trailing quote to finish the
current argument first.
In case the user is in a function with only one local variable and is currently
editing an empty line in the multiline expression editor, then we are in the
unique situation where we can have a unique completion for an empty input line.
(In a normal LLDB session this would never occur as empty input would just list
all the possible commands).
In this special situation our check if the current argument needs to receive a
trailing quote will crash LLDB as there is no current argument and the
completion code just unconditionally tries to access the current argument. This
just adds the missing check if we even have a current argument before we check
if we need to add a terminating quote character.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D85903
When bit-field data was stored in a Scalar in ValueObjectChild during UpdateValue()
it was extracting the bit-field value. Later on in lldb_private::DumpDataExtractor(…)
we were again attempting to extract the bit-field. Which would then not obtain the
correct value. This will remove the extra extraction in UpdateValue().
We hit this specific case when values are passed in registers, which we could only
reproduce in an optimized build.
Differential Revision: https://reviews.llvm.org/D85376
This patch configures LLDB.framework to build as a flat unversioned
framework on non-macOS Darwin targets, which have never supported the
macOS framework layout.
This patch also renames the 'IOS' cmake variable to 'APPLE_EMBEDDED' to
reflect the fact that lldb is built for several different kinds of embedded
Darwin targets, not just iOS.
Differential Revision: https://reviews.llvm.org/D85770
This reverts commit 246afe0cd1. This broke
the following tests on Linux it seems:
lldb-api :: commands/expression/multiline-completion/TestMultilineCompletion.py
lldb-api :: iohandler/completion/TestIOHandlerCompletion.py
I implemented autosuggestion if there is one possible suggestion.
I set the keybinds for every character. When a character is typed, Editline::TypedCharacter is called.
Then, autosuggestion part is displayed in gray, and you can actually input by typing C-k.
Editline::Autosuggest is a function for finding completion, and it is like Editline::TabCommand now, but I will add more features to it.
Testing does not work well in my environment, so I can't confirm that it goes well, sorry. I am dealing with it now.
Reviewed By: teemperor, JDevlieghere, #lldb
Differential Revision: https://reviews.llvm.org/D81001
Rather than handling zlib handling manually, use find_package from CMake
to find zlib properly. Use this to normalize the LLVM_ENABLE_ZLIB,
HAVE_ZLIB, HAVE_ZLIB_H. Furthermore, require zlib if LLVM_ENABLE_ZLIB is
set to YES, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
This is a reland of abb0075 with all followup changes and fixes that
should address issues that were reported in PR44780.
Differential Revision: https://reviews.llvm.org/D79219
When loading a PE/COFF target, the associated PDB file often wasn't
found. The executable module contains a path for the associated PDB
file, but people often debug from a different directory than the one
their build system uses. (This is especially common in post-mortem
and cross platform debugging.)
Suppose the COFF executable being debugged is `~/proj/foo.exe`, but
it was built elsewhere and refers to `D:\remote\build\env\foobar.pdb`,
LLDB wouldn't find it.
With this change, if no file exists at the PDB path, LLDB will look
in the executable directory for a PDB file that matches the name of
the one it expected (e.g., `~/proj/foobar.pdb`). If found, the PDB
is subject to the same matching criteria (GUIDs and age) as would
have been used had it been in the original location.
This same-directory-as-the-binary rule is commonly used by debuggers
on Windows.
Differential Review: https://reviews.llvm.org/D84815
Separate the CMake logic for Lua and Python to clearly distinguish
between code specific to either scripting language and the code shared
by both.
What this patch does is:
- Move Python specific code into the bindings/python subdirectory.
- Move the Lua specific code into the bindings/lua subdirectory.
- Add the _python suffix to Python specific functions/targets.
- Fix a dependency issue that would check the binding instead of
whether the scripting language is enabled.
Note that this patch also changes where the bindings are generated,
which might affect downstream projects that check them in.
Differential revision: https://reviews.llvm.org/D85708
Like the other type sugar removed by RemoveWrappingTypes, SubstTemplateTypeParm
is just pure sugar that should be ignored. If we don't ignore it (as we do now),
LLDB will fail to read values from record fields that have a
SubstTemplateTypeParm type.
Only way to produce such a type in LLDB is to either use the `import-std-module`
setting to get a template into the expression parser or just create your own
template directly in the expression parser which is what we do in the test.
Reviewed By: jarin
Differential Revision: https://reviews.llvm.org/D85132
1. Added a common completion WatchPointIDs to complete with a list of the IDs of the current watchpoints;
2. Applied the completion to these commands: watchpoint delete/enable/disable/modify/ignore;
3. Added a correlated test case.
Reviewed By: teemperor
Differential Revision: https://reviews.llvm.org/D84104
1. Added a common completion completing with a list of the threads of the current process;
2. Apply the common completion above to these commands: thread
continue/info/exception/select/step-in/step-inst/step-inst-over/step-out/step-over/step-script
3. Correlated test case test_common_completion_thread_index.
Reviewed By: teemperor
Differential Revision: https://reviews.llvm.org/D84088
1. Added a common completion StopHookIDs to provide completion with a list of stop hook ids;
2. Applied the common completion to commands: `target stop-hook delete/enable/disable';
3. Added an related test case.
Reviewed By: teemperor
Differential Revision: https://reviews.llvm.org/D84123
1. Added a common completion ModuleUUIDs to provide a list of the UUIDs of modules for completion;
2. Added a new enumeration item eArgTypeModuleUUID to CommandArgumentType which is set as the option argument type of OptionGroupUUID;
3. Applied the module UUID completion to the argument of the type eArgTypeModuleUUID in lldb/source/Interpreter/CommandObject.cpp;
4. Added an related test case in lldb/test/API/functionalities/completion/TestCompletion.py.
Commands frame select and thread backtrace -s can be completed in the same way.
Moved the dedicated completion of frame select into a common completion and
apply it to the both commands, along with the test modified.
Dedicated completion for the command `target modules search-paths insert` with a test case.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D83309
1. Added a new common completion TypeLanguages to provide a list of supporting languages;
2. Bound the completion to eArgTypeLanguage;
3. Added a related test case.
Dedicated completion for the command `thread plan discard` with a corresponding
test case.
Reviewed By: teemperor
Differential Revision: https://reviews.llvm.org/D83234
No one is calling this function it seems and according to
https://bugs.llvm.org/show_bug.cgi?id=47088 this can leak memory, so let's just
remove it:
Quote from the bug report:
> Before return on line 146, the memory allocated on line 130 is not freed.
Reviewed By: amccarth
Differential Revision: https://reviews.llvm.org/D85633
1.Added a new common completion DisassemblyFlavors;
2. Bound DisassemblyFlavors to argument of type eArgTypeDisassemblyFlavor in
CommandObject.cpp;
3. Added a related test case.
1. Applied the common completion `eVariablePathCompletion` to command
`watchpoint set variable`;
2. Added a related test case.
Reviewed By: teemperor, JDevlieghere
Differential Revision: https://reviews.llvm.org/D84177
1. Applied the common completion `eDiskFileCompletion` to the first argument of
the command `platform target-install`.
2. Added a related test case.
Reviewed By: teemperor
Differential Revision: https://reviews.llvm.org/D84179
Rather than handling zlib handling manually, use find_package from CMake
to find zlib properly. Use this to normalize the LLVM_ENABLE_ZLIB,
HAVE_ZLIB, HAVE_ZLIB_H. Furthermore, require zlib if LLVM_ENABLE_ZLIB is
set to YES, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
This is a reland of abb0075 with all followup changes and fixes that
should address issues that were reported in PR44780.
Differential Revision: https://reviews.llvm.org/D79219