encounters an OEQ or UNE comparison, and update its callers to check
for this return status and recover. This fixes a problem resulting from
the LowerOperation hooks being called from LegalizeVectorOps, because
LegalizeVectorOps only lowers vectors, so OEQ and UNE comparisons may
still be at large. This fixes PR5092.
llvm-svn: 84640
All of these "subreg32" modifier instructions are handled
explicitly by the MCInst lowering phase. If they got to
the asmprinter, they would explode. They should eventually
be replace with correct use of subregs.
llvm-svn: 84526
LLC was scheduling compares before the adds causing wrong branches to be taken
in programs, resulting in misoptimized code wherever atomic adds where used.
llvm-svn: 84485
stack slots and giving them different PseudoSourceValue's did not fix the
problem of post-alloc scheduling miscompiling llvm itself.
- Apply Dan's conservative workaround by assuming any non fixed stack slots can
alias other memory locations. This means a load from spill slot #1 cannot
move above a store of spill slot #2.
- Enable post-alloc scheduling for x86 at optimization leverl Default and above.
llvm-svn: 84424
1. Emit external function type information for all COFF targets since it's
a feature of object format
2. Emit linker directives only for cygming (since this is ld-specific stuff)
llvm-svn: 84214
(for uses marked kill and defs marked dead) a few instructions in
addition to forwards. Also, increase the maximum number of instructions
to scan, as it appears to help in a fair number of cases.
llvm-svn: 84061
it to hold the address of an sret return value, for x86-64 ABI purposes.
Also, fix the test that was originally intended to test this to actually
test it, using FileCheck.
llvm-svn: 83853
when one of the bits being tested would end up being the sign bit in the
narrower type, and a signed comparison is being performed, since this would
change the result of the signed comparison. This fixes PR5132.
llvm-svn: 83670
implementations with a new MachineInstr::isInvariantLoad, which uses
MachineMemOperands and is target-independent. This brings MachineLICM
and other functionality to targets which previously lacked an
isInvariantLoad implementation.
llvm-svn: 83475
a virtual register to eliminate a frame index, it can return that register
and the constant stored there to PEI to track. When scavenging to allocate
for those registers, PEI then tracks the last-used register and value, and
if it is still available and matches the value for the next index, reuses
the existing value rather and removes the re-materialization instructions.
Fancier tracking and adjustment of scavenger allocations to keep more
values live for longer is possible, but not yet implemented and would likely
be better done via a different, less special-purpose, approach to the
problem.
eliminateFrameIndex() is modified so the target implementations can return
the registers they wish to be tracked for reuse.
ARM Thumb1 implements and utilizes the new mechanism. All other targets are
simply modified to adjust for the changed eliminateFrameIndex() prototype.
llvm-svn: 83467
verbose-asm mode, print comments instead. This eliminates a non-comment
difference between verbose-asm mode and non-verbose-asm mode.
Also, factor out the relevant code out of all the targets and into
target-independent code.
llvm-svn: 83392
the new predicates I added) instead of going through a context and doing a
pointer comparison. Besides being cheaper, this allows a smart compiler
to turn the if sequence into a switch.
llvm-svn: 83297
unused DECLARE instruction.
KILL is not yet used anywhere, it will replace TargetInstrInfo::IMPLICIT_DEF
in the places where IMPLICIT_DEF is just used to alter liveness of physical
registers.
llvm-svn: 83006
- Allocate MachineMemOperands and MachineMemOperand lists in MachineFunctions.
This eliminates MachineInstr's std::list member and allows the data to be
created by isel and live for the remainder of codegen, avoiding a lot of
copying and unnecessary translation. This also shrinks MemSDNode.
- Delete MemOperandSDNode. Introduce MachineSDNode which has dedicated
fields for MachineMemOperands.
- Change MemSDNode to have a MachineMemOperand member instead of its own
fields with the same information. This introduces some redundancy, but
it's more consistent with what MachineInstr will eventually want.
- Ignore alignment when searching for redundant loads for CSE, but remember
the greatest alignment.
Target-specific code which previously used MemOperandSDNodes with generic
SDNodes now use MemIntrinsicSDNodes, with opcodes in a designated range
so that the SelectionDAG framework knows that MachineMemOperand information
is available.
llvm-svn: 82794
naming scheme used in SelectionDAG, where there are multiple kinds
of "target" nodes, but "machine" nodes are nodes which represent
a MachineInstr.
llvm-svn: 82790
And fix a bug with the behavior of min/max instructions formed from
fcmp uge comparisons.
Also, use FiniteOnlyFPMath() for this code instead of UnsafeFPMath,
as it is more specific.
llvm-svn: 82466