Reapply r283827 by fixing the tests to not be target specific
Currently, driver level warnings do not show option names (e.g. warning:
complain about foo [-Woption-name]) in a diagnostic unless
-fdiagnostics-show-option is explictly specified. OTOH, the driver by
default turn this option on for CC1. Change the logic to show option
names by default in the driver as well.
Differential Revision: https://reviews.llvm.org/D24516
rdar://problem/27300909
llvm-svn: 283913
The backend now has the capability to save information from optimizations, the
same information that can be used to generate optimization diagnostics but in
machine-consumable form, into an output file. This can be enabled when using
opt (see r282539), and this change enables it when using clang. The idea is
that other tools will be able to consume these files, and perhaps in
combination with the original source code, produce various kinds of
optimization reports for users (and for compiler developers).
We now have at-least two tools that can consume these files:
* tools/llvm-opt-report
* utils/opt-viewer
Using the flag -fsave-optimization-record will cause the YAML file to be
generated; the file name will be based on the output file name (if we're using
-c or -S and have an output name), or the input file name. When we're using
CUDA, or some other offloading mechanism, separate files are generated for each
backend target. The output file name can be specified by the user using
-foptimization-record-file=filename.
Differential Revision: https://reviews.llvm.org/D25225
llvm-svn: 283834
Currently, driver level warnings do not show option names (e.g. warning:
complain about foo [-Woption-name]) in a diagnostic unless
-fdiagnostics-show-option is explictly specified. OTOH, the driver by
default turn this option on for CC1. Change the logic to show option
names by default in the driver as well.
Differential Revision: https://reviews.llvm.org/D24516
rdar://problem/27300909
llvm-svn: 283827
Summary: This matches the idiom we use for our other CUDA wrapper headers.
Reviewers: tra
Subscribers: beanz, mgorny, cfe-commits
Differential Revision: https://reviews.llvm.org/D24978
llvm-svn: 283679
Summary:
Also makes -fcoroutines_ts to be both a Driver and CC1 flag.
Patch mostly by EricWF.
Reviewers: rnk, cfe-commits, rsmith, EricWF
Subscribers: mehdi_amini
Differential Revision: https://reviews.llvm.org/D25130
llvm-svn: 283064
assume that ::operator new provides no more alignment than is necessary for any
primitive type, except when we're on a GNU OS, where glibc's malloc guarantees
to provide 64-bit alignment on 32-bit systems and 128-bit alignment on 64-bit
systems. This can be controlled by the command-line -fnew-alignment flag.
llvm-svn: 282974
Summary:
This lets people link against LLVM and their own version of the UTF
library.
I determined this only affects llvm, clang, lld, and lldb by running
$ git grep -wl 'UTF[0-9]\+\|\bConvertUTF\bisLegalUTF\|getNumBytesFor' | cut -f 1 -d '/' | sort | uniq
clang
lld
lldb
llvm
Tested with
ninja lldb
ninja check-clang check-llvm check-lld
(ninja check-lldb doesn't complete for me with or without this patch.)
Reviewers: rnk
Subscribers: klimek, beanz, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D24996
llvm-svn: 282822
This option behaves in a similar spirit as -save-temps and writes
internal llvm statistics in json format to a file.
Differential Revision: https://reviews.llvm.org/D24820
llvm-svn: 282426
Clang has the default FP contraction setting of “-ffp-contract=on”, which
doesn't really mean “on” in the conventional sense of the word, but rather
really means “according to the per-statement effective value of the relevant
pragma”.
Before this patch, Clang has that pragma defaulting to “off”. Since the
“-ffp-contract=on” mode is really an AND of two booleans and the second of them
defaults to “off”, the whole thing effectively defaults to “off”. This patch
changes the default value of the pragma to “on”, thus making the default pair of
booleans (on, on) rather than (on, off). This makes FP optimization slightly
more aggressive than before when not using either “-Ofast”, “-ffast-math”, or
“-ffp-contract=fast”. Even with this patch the compiler still respects
“-ffp-contract=off”.
As per a suggestion by Steve Canon, the added code does _not_ require “-O3” or
higher. This is so as to try our best to preserve identical floating-point
results for unchanged source code compiling for an unchanged target when only
changing from any optimization level in the set (“-O0”, “-O1”, “-O2”, “-O3”) to
any other optimization level in that set. “-Os” and “-Oz” seem to be behaving
identically, i.e. should probably be considered a part of the aforementioned
set, but I have not reviewed this rigorously. “-Ofast” is explicitly _not_ a
member of that set.
Patch authored by Abe Skolnik [a.skolnik@samsung.com] and Stephen Canon [scanon@apple.com].
Differential Revision: https://reviews.llvm.org/D24481
llvm-svn: 282259
Currently, the Clang version is computed as follows:
1. LLVM defines major, minor, and patch versions, all statically set. Today,
these are 4, 0, and 0, respectively.
2. The static version numbers are combined into PACKAGE_VERSION along with a
suffix, so the result today looks like "4.0.0svn".
3. Clang extracts CLANG_VERSION from PACKAGE_VERSION using a regexp. The regexp
allows the patch level to omitted, and drops any non-digit trailing values.
Today, this result looks like "4.0.0".
4. CLANG_VERSION is then split further into CLANG_VERSION_MAJOR and
CLANG_VERSION_MINOR. Today, these resolve to 4 and 0, respectively.
5. If CLANG_VERSION matches a regexp with three version components, then
CLANG_VERSION_PATCHLEVEL is extracted and the CLANG_HAS_VERSION_PATCHLEVEL
variable is set to 1. Today, these values are 0 and 1, respectively.
6. The CLANG_VERSION_* variables (and CLANG_HAS_VERSION_PATCHLEVEL) are
configured into [llvm/tools/clang/]include/clang/Basic/Version.inc
verbatim by CMake.
7. In [llvm/tools/clang/]include/clang/Basic/Version.h, macros are defined
conditionally, based on CLANG_HAS_VERSION_PATCHLEVEL, to compute
CLANG_VERSION_STRING as either a two- or three-level version number. Today,
this value is "4.0.0", because despite the patchlevel being 0, it was
matched by regexp and is thus "HAS"ed by the preprocessor. This string is
then used wherever Clang's "version" is needed [*].
[*] Including, notably, by compiler-rt, for computing its installation path.
This change collapses steps 2-5 by defaulting Clang to use LLVM's (non-string)
version components for the Clang version (see [*] for why not PACKAGE_VERSION),
and collapses steps 6 and 7 by simply writing CLANG_VERSION_STRING into
Version.inc. The Clang version today always uses the patchlevel form, so the
collapsed Version.inc does not have logic for a version without a patch level.
Historically speaking, this technique began with the VER file in r82085 (which
survives in the form of the regexp in #3). The major, minor, and patchlevel
versions were introduced by r106863 (which remains in #4-6). The VER file itself
was deleted in favor of the LLVM version number in r106914. On the LLVM side,
the individual LLVM_VERSION_MAJOR, LLVM_VERSION_MINOR, and PACKAGE_VERSION
weren't introduced for nearly two more years, until r150405.
llvm-svn: 281666
The class PTHWriter is in lib/Frontend/CacheTokens.cpp
inside the anonymous namespace.
This diff changes the order of fields an removes excessive padding.
Test plan: make -j8 check-clang
Differential revision: https://reviews.llvm.org/D23902
llvm-svn: 281385
Original commit message:
Add -fdiagnostics-show-hotness
Summary:
I've recently added the ability for optimization remarks to include the
hotness of the corresponding code region. This uses PGO and allows
filtering of the optimization remarks by relevance. The idea was first
discussed here:
http://thread.gmane.org/gmane.comp.compilers.llvm.devel/98334
The general goal is to produce a YAML file with the remarks. Then, an
external tool could dynamically filter these by hotness and perhaps by
other things.
That said it makes sense to also expose this at the more basic level
where we just include the hotness info with each optimization remark.
For example, in D22694, the clang flag was pretty useful to measure the
overhead of the additional analyses required to include hotness.
(Without the flag we don't even run the analyses.)
For the record, Hal has already expressed support for the idea of this
patch on IRC.
Differential Revision: https://reviews.llvm.org/D23284
llvm-svn: 281293
Summary:
I've recently added the ability for optimization remarks to include the
hotness of the corresponding code region. This uses PGO and allows
filtering of the optimization remarks by relevance. The idea was first
discussed here:
http://thread.gmane.org/gmane.comp.compilers.llvm.devel/98334
The general goal is to produce a YAML file with the remarks. Then, an
external tool could dynamically filter these by hotness and perhaps by
other things.
That said it makes sense to also expose this at the more basic level
where we just include the hotness info with each optimization remark.
For example, in D22694, the clang flag was pretty useful to measure the
overhead of the additional analyses required to include hotness.
(Without the flag we don't even run the analyses.)
For the record, Hal has already expressed support for the idea of this
patch on IRC.
Differential Revision: https://reviews.llvm.org/D23284
llvm-svn: 281276
OpenCL requires __ENDIAN_LITTLE__ be set for little endian targets.
The default for targets was also apparently big endian, so AMDGPU
was incorrectly reported as big endian. Set this from the triple
so targets don't have another place to set the endianness.
llvm-svn: 280787
-fprofile-dir=path allows the user to specify where .gcda files should be
emitted when the program is run. In particular, this is the first flag that
causes the .gcno and .o files to have different paths, LLVM is extended to
support this. -fprofile-dir= does not change the file name in the .gcno (and
thus where lcov looks for the source) but it does change the name in the .gcda
(and thus where the runtime library writes the .gcda file). It's different from
a GCOV_PREFIX because a user can observe that the GCOV_PREFIX_STRIP will strip
paths off of -fprofile-dir= but not off of a supplied GCOV_PREFIX.
To implement this we split -coverage-file into -coverage-data-file and
-coverage-notes-file to specify the two different names. The !llvm.gcov
metadata node grows from a 2-element form {string coverage-file, node dbg.cu}
to 3-elements, {string coverage-notes-file, string coverage-data-file, node
dbg.cu}. In the 3-element form, the file name is already "mangled" with
.gcno/.gcda suffixes, while the 2-element form left that to the middle end
pass.
llvm-svn: 280306
r280133. Original commit message:
C++ Modules TS: driver support for building modules.
This works as follows: we add --precompile to the existing gamut of options for
specifying how far to go when compiling an input (-E, -c, -S, etc.). This flag
specifies that an input is taken to the precompilation step and no further, and
this can be specified when building a .pcm from a module interface or when
building a .pch from a header file.
The .cppm extension (and some related extensions) are implicitly recognized as
C++ module interface files. If --precompile is /not/ specified, the file is
compiled (via a .pcm) to a .o file containing the code for the module (and then
potentially also assembled and linked, if -S, -c, etc. are not specified). We
do not yet suppress the emission of object code for other users of the module
interface, so for now this will only work if everything in the .cppm file has
vague linkage.
As with the existing support for module-map modules, prebuilt modules can be
provided as compiler inputs either via the -fmodule-file= command-line argument
or via files named ModuleName.pcm in one of the directories specified via
-fprebuilt-module-path=.
This also exposes the -fmodules-ts cc1 flag in the driver. This is still
experimental, and in particular, the concrete syntax is subject to change as
the Modules TS evolves in the C++ committee. Unlike -fmodules, this flag does
not enable support for implicitly loading module maps nor building modules via
the module cache, but those features can be turned on separately and used in
conjunction with the Modules TS support.
llvm-svn: 280134
to CC1, which are translated to function attributes and can e.g. be mapped on
build attributes FP_exceptions and FP_denormal. Setting these build attributes
allows better selection of floating point libraries.
Differential Revision: https://reviews.llvm.org/D23840
llvm-svn: 280064
This works as follows: we add --precompile to the existing gamut of options for
specifying how far to go when compiling an input (-E, -c, -S, etc.). This flag
specifies that an input is taken to the precompilation step and no further, and
this can be specified when building a .pcm from a module interface or when
building a .pch from a header file.
The .cppm extension (and some related extensions) are implicitly recognized as
C++ module interface files. If --precompile is /not/ specified, the file is
compiled (via a .pcm) to a .o file containing the code for the module (and then
potentially also assembled and linked, if -S, -c, etc. are not specified). We
do not yet suppress the emission of object code for other users of the module
interface, so for now this will only work if everything in the .cppm file has
vague linkage.
As with the existing support for module-map modules, prebuilt modules can be
provided as compiler inputs either via the -fmodule-file= command-line argument
or via files named ModuleName.pcm in one of the directories specified via
-fprebuilt-module-path=.
This also exposes the -fmodules-ts cc1 flag in the driver. This is still
experimental, and in particular, the concrete syntax is subject to change as
the Modules TS evolves in the C++ committee. Unlike -fmodules, this flag does
not enable support for implicitly loading module maps nor building modules via
the module cache, but those features can be turned on separately and used in
conjunction with the Modules TS support.
llvm-svn: 280035
In cases where .dwo/.dwp files are guaranteed to be available, skipping
the extra online (in the .o file) inline info can save a substantial
amount of space - see the original r221306 for more details there.
llvm-svn: 279651
In this mode, there is no need to load any module map and the programmer can
simply use "@import" syntax to load the module directly from a prebuilt
module path. When loading from prebuilt module path, we don't support
rebuilding of the module files and we ignore compatible configuration
mismatches.
rdar://27290316
Differential Revision: http://reviews.llvm.org/D23125
llvm-svn: 279096
standard's Annex B. We now attempt to increase the process's stack rlimit to
8MiB on startup, which appears to be enough to allow this to work reliably.
(And if it turns out not to be, we can investigate increasing it further.)
llvm-svn: 278983
Add 'ignore-non-existent-contents' to tell the VFS whether an invalid path
obtained via 'external-contents' should cause iteration on the VFS to stop.
If 'true', the VFS should ignore the entry and continue with the next. Allows
YAML files to be shared across multiple compiler invocations regardless of
prior existent paths in 'external-contents'. This global value is overridable
on a per-file basis.
This adds the parsing and write test part, but use by VFS comes next.
Differential Revision: https://reviews.llvm.org/D23422
rdar://problem/27531549
llvm-svn: 278456
Let the driver pass the option to frontend. Do not set precision metadata for division instructions when this option is set. Set function attribute "correctly-rounded-divide-sqrt-fp-math" based on this option.
Differential Revision: https://reviews.llvm.org/D22940
llvm-svn: 278155
Adjust target features for amdgcn target when -cl-denorms-are-zero is set.
Denormal support is controlled by feature strings fp32-denormals fp64-denormals in amdgcn target. If -cl-denorms-are-zero is not set and the command line does not set fp32/64-denormals feature string, +fp32-denormals +fp64-denormals will be on for GPU's supporting them.
A new virtual function virtual void TargetInfo::adjustTargetOptions(const CodeGenOptions &CGOpts, TargetOptions &TargetOpts) const is introduced to allow adjusting target option by codegen option.
Differential Revision: https://reviews.llvm.org/D22815
llvm-svn: 278151
This patch adds a command line option to list the checkers that were enabled
by analyzer-checker and not disabled by -analyzer-disable-checker.
It can be very useful to debug long command lines when it is not immediately
apparent which checkers are turned on and which checkers are turned off.
Differential Revision: https://reviews.llvm.org/D23060
llvm-svn: 278006
This differs from the previous version by being more careful about template
instantiation/specialization in order to prevent errors when building with
clang -Werror. Specifically:
* begin is not defined in the template and is instead instantiated when Head
is. I think the warning when we don't do that is wrong (PR28815) but for now
at least do it this way to avoid the warning.
* Instead of performing template specializations in LLVM_INSTANTIATE_REGISTRY
instead provide a template definition then do explicit instantiation. No
compiler I've tried has problems with doing it the other way, but strictly
speaking it's not permitted by the C++ standard so better safe than sorry.
Original commit message:
Currently the Registry class contains the vestiges of a previous attempt to
allow plugins to be used on Windows without using BUILD_SHARED_LIBS, where a
plugin would have its own copy of a registry and export it to be imported by
the tool that's loading the plugin. This only works if the plugin is entirely
self-contained with the only interface between the plugin and tool being the
registry, and in particular this conflicts with how IR pass plugins work.
This patch changes things so that instead the add_node function of the registry
is exported by the tool and then imported by the plugin, which solves this
problem and also means that instead of every plugin having to export every
registry they use instead LLVM only has to export the add_node functions. This
allows plugins that use a registry to work on Windows if
LLVM_EXPORT_SYMBOLS_FOR_PLUGINS is used.
llvm-svn: 277806