This is not bullet-proof, as you might end up running in a thread where you shouldn't, but the previous policy had the same drawback
Also, in cases where code-running formatters were being recursively applied, the previous policy caused deeper levels to fail, whereas this will at least get such scenarios to function
We might eventually want to consider disqualifying certain threads/frames for "viability", but I'd rather keep it simple until complexity is proven to be necessary
llvm-svn: 214337
reinterpret_cast may not convert a pointer-to-function to a
void-pointer. Take a detour through intptr_t and *then* convert to a
pointer-to-function.
Differential Revision: http://reviews.llvm.org/D4627
llvm-svn: 213682
These fix the broken debian lldb build, which is using g++ 4.7.2.
TypeFormat changes:
1. stopped using the C++11 "dtor = default;" construct.
The generated default destructor in the two derived classes wanted
them to have a different throws() semantic that was causing 4.7 to
fail to generate it. I switched these to empty destructors defined
in the .cpp file.
2. Switched the m_types map from an ordered map to an unordered_map.
g++ 4.7's c++ library supports the C++11 emplace() used by TypeFormat
but the same c++ library's map impl does not. Since TypeFormat didn't
look like it depended on ordering in the map, I just switched it to
a std::unordered_map.
NativeProcessLinux - g++ 4.7 chokes on lexing the "<::" in
static_cast<::pid_t>(wpid). g++ 4.8+ and clang are fine with it.
I just put a space in between the "<" and the "::" and that cleared
it up.
llvm-svn: 212681
Replace adhoc inline implementation of llvm::array_lengthof in favour of the
implementation in LLVM. This is simply a cleanup change, no functional change
intended.
llvm-svn: 211868
lldb support. I'll be doing more testing & cleanup but I wanted to
get the initial checkin done.
This adds a new SBExpressionOptions::SetLanguage API for selecting a
language of an expression.
I added adds a new SBThread::GetInfoItemByPathString for retriving
information about a thread from that thread's StructuredData.
I added a new StructuredData class for representing
key-value/array/dictionary information (e.g. JSON formatted data).
Helper functions to read JSON and create a StructuredData object,
and to print a StructuredData object in JSON format are included.
A few Cocoa / Cocoa Touch data formatters were updated by Enrico
to track changes in iOS 8 / Yosemite.
Before we query a thread's extended information, the system runtime may
provide hints to the remote debug stub that it will use to retrieve values
out of runtime structures. I added a new SystemRuntime method
AddThreadExtendedInfoPacketHints which allows the SystemRuntime to add
key-value type data to the initial request that we send to the remote stub.
The thread-format formatter string can now retrieve values out of a thread's
extended info structured data. The default thread-format string picks up
two of these - thread.info.activity.name and thread.info.trace_messages.
I added a new "jThreadExtendedInfo" packet in debugserver; I will
add documentation to the lldb-gdb-remote.txt doc soon. It accepts
JSON formatted arguments (most importantly, "thread":threadnum) and
it returns a variety of information regarding the thread to lldb
in JSON format. This JSON return is scanned into a StructuredData
object that is associated with the thread; UI layers can query the
thread's StructuredData to see if key-values are present, and if
so, show them to the user. These key-values are likely to be
specific to different targets with some commonality among many
targets. For instance, many targets will be able to advertise the
pthread_t value for a thread.
I added an initial rough cut of "thread info" command which will print
the information about a thread from the jThreadExtendedInfo result.
I need to do more work to make this format reasonably.
Han Ming added calls into the pmenergy and pmsample libraries if
debugserver is run on Mac OS X Yosemite to get information about the
inferior's power use.
I added support to debugserver for gathering the Genealogy information
about threads, if it exists, and returning it in the jThreadExtendedInfo
JSON result.
llvm-svn: 210874
Rationale:
Pretty simply, the idea is that sometimes type names are way too long and contain way too many details for the average developer to care about. For instance, a plain ol' vector of int might be shown as
std::__1::vector<int, std::__1::allocator<....
rather than the much simpler std::vector<int> form, which is what most developers would actually type in their code
Proposed solution:
Introduce a notion of "display name" and a corresponding API GetDisplayTypeName() to return such a crafted for visual representation type name
Obviously, the display name and the fully qualified (or "true") name are not necessarily the same - that's the whole point
LLDB could choose to pick the "display name" as its one true notion of a type name, and if somebody really needs the fully qualified version of it, let them deal with the problem
Or, LLDB could rename what it currently calls the "type name" to be the "display name", and add new APIs for the fully qualified name, making the display name the default choice
The choice that I am making here is that the type name will keep meaning the same, and people who want a type name suited for display will explicitly ask for one
It is the less risky/disruptive choice - and it should eventually make it fairly obvious when someone is asking for the wrong type
Caveats:
- for now, GetDisplayTypeName() == GetTypeName(), there is no logic to produce customized display type names yet.
- while the fully-qualified type name is still the main key to the kingdom of data formatters, if we start showing custom names to people, those should match formatters
llvm-svn: 209072
This decision has always been statically-bound to the individual formatter. With this patch, the idea is that this decision could potentially be dynamic depending on the ValueObject itself
llvm-svn: 207046
The "unexpected value" message only matters to me, but is bound to make the experience more confusing for people when some uninitialized memory looks like an NSNumber and then can't be formatted properly, and that error comes out in the UI
Just drop the error message entirely - nobody but me cares
llvm-svn: 205978
Enable data formatters to see-through pointers/references to typedefs
For instance, if Foo is a typedef to Bar, and there is a formatter for any/all of Bar*, Bar&, Bar&&, then Foo*, Foo&, and Foo&& should pick these up if Foo-specific formatters don't exist
llvm-svn: 205939
This is a purely mechanical change explicitly casting any parameters for printf
style conversion. This cleans up the warnings emitted by gcc 4.8 on Linux.
llvm-svn: 205607
This is a mechanical change addressing the various sign comparison warnings that
are identified by both clang and gcc. This helps cleanup some of the warning
spew that occurs during builds.
llvm-svn: 205390
For some reason, the libc++ vector<bool> data formatter was essentially a costly no-up, doing everything required of it, except actually generating the child values!
This restores its functionality
llvm-svn: 205259
This is a mechanical cleanup of unused functions. In the case where the
functions are referenced (in comment form), I've simply commented out the
functions. A second pass to clean that up is warranted.
The functions which are otherwise unused have been removed. Some of these were
introduced in the initial commit and not in use prior to that point!
NFC
llvm-svn: 204310
read during materialization. First of all, report
if we can't read the data for some reason. Second,
consult the ValueObject's error and report that if
there's some problem.
<rdar://problem/16074201>
llvm-svn: 202552
Revert the spirit of r199857 - a convincing case can be made that overriding a summary's format markers behind its back is not the right thing to do
This commit reverts the behavior of the code to the previous model, and changes the test case to validate the opposite of what it was validating before
llvm-svn: 201455
Provide a filter for libc++ std::atomic<T>
This just hides some implementation clutter and promotes the actual content to only child status
llvm-svn: 200984
The many many benefits include:
1 - Input/Output/Error streams are now handled as real streams not a push style input
2 - auto completion in python embedded interpreter
3 - multi-line input for "script" and "expression" commands now allow you to edit previous/next lines using up and down arrow keys and this makes multi-line input actually a viable thing to use
4 - it is now possible to use curses to drive LLDB (please try the "gui" command)
We will need to deal with and fix any buildbot failures and tests and arise now that input/output and error are correctly hooked up in all cases.
llvm-svn: 200263
ValueObjectPrinter could enter an infinite loop while trying to display an aptly formed ValueObject: a reference, with a child of some pointer type, such that the pointees chain ended up pointing back to some part of itself - a pointer to itself being the simplest such case
Fixed here by only setting a pointer depth when needed, and ensuring that we won't overflow and wrap the pointer depth when it's zero.
llvm-svn: 200247
The "type format add" command gets a new flag --type (-t). If you pass -t <sometype>, upon fetching the value for an object of your type,
LLDB will display it as-if it was of enumeration type <sometype>
This is useful in cases of non-contiguous enums where there are empty gaps of unspecified values, and as such one cannot type their variables as the enum type,
but users would still like to see them as-if they were of the enum type (e.g. DWARF field types with their user-reserved ranges)
The SB API has also been improved to handle both types of formats, and a test case is added
llvm-svn: 198105
TypeFormatImpl used to just wrap a Format (and Flags for matching), and then ValueObject itself would do the printing deed
With this checkin, the responsibility of generating a value string is centralized in the data formatter (as it should, and already is for summaries)
This change is good practice per se, and should also enable us to extend the type format mechanism in a cleaner way
llvm-svn: 197874
So, rename the class for what it truly is: a FormattersContainer
Also do a bunch of related text substitutions in the interest of overall naming clarity
llvm-svn: 197795
Rework data formatters matching algorithm
What happens now is that, for each category, the FormatNavigator generates all possible matches, and checks them one by one
Since the possible matches do not actually depend on the category (whether a match is accepted or not does, but that check can be shifted at a more convenient time),
it is actually feasible to generate every possible match upfront and then let individual categories just scan through those
This commit changes things by introducing a notion of formatters match candidate, and shifting responsibility for generating all of them given a (ValueObject,DynamicValueType) pair
from the FormatNavigator back to the FormatManager
A list of these candidates is then passed down to each category for matching
Candidates also need to remember whether they were generated by stripping pointers, references, typedefs, since this is something that individual formatters can choose to reject
This check, however, is conveniently only done once a "textual" match has been found, so that the list of candidates is truly category-independent
While the performance benefit is small (mostly, due to caching), this is much cleaner from a design perspective
llvm-svn: 195395
Change the NSSet data formatter to not use the expression parser to produce synthetic children
In small-scale experimentation with lldb-perf, this improves our performance by around 25%
llvm-svn: 195294
It completes the job of using EvaluateExpressionOptions consistently throughout
the inferior function calling mechanism in lldb begun in Greg's patch r194009.
It removes a handful of alternate calls into the ClangUserExpression/ClangFunction/ThreadPlanCallFunction which
were there for convenience. Using the EvaluateExpressionOptions removes the need for them.
Using that it gets the --debug option from Greg's patch to work cleanly.
It also adds another EvaluateExpressionOption to not trap exceptions when running expressions. You shouldn't
use this option unless you KNOW your expression can't throw beyond itself. This is:
<rdar://problem/15374885>
At present this is only available through the SB API's or python.
It fixes a bug where function calls would unset the ObjC & C++ exception breakpoints without checking whether
they were set by somebody else already.
llvm-svn: 194182
pure virtual base class and made StackFrame a subclass of that. As
I started to build on top of that arrangement today, I found that it
wasn't working out like I intended. Instead I'll try sticking with
the single StackFrame class -- there's too much code duplication to
make a more complicated class hierarchy sensible I think.
llvm-svn: 193983
defines a protocol that all subclasses will implement. StackFrame
is currently the only subclass and the methods that Frame vends are
nearly identical to StackFrame's old methods.
Update all callers to use Frame*/Frame& instead of pointers to
StackFrames.
This is almost entirely a mechanical change that touches a lot of
the code base so I'm committing it alone. No new functionality is
added with this patch, no new subclasses of Frame exist yet.
I'll probably need to tweak some of the separation, possibly moving
some of StackFrame's methods up in to Frame, but this is a good
starting point.
<rdar://problem/15314068>
llvm-svn: 193907
User-vended by-type formatters still would prevail on these hardcoded ones
For the time being, while the infrastructure is there, no such formatters exist
This can be useful for cases such as expanding vtables for C++ class pointers, when there is no clear cut notion of a typename matching, and the feature is low-level enough that it makes sense for the debugger core to be vending it
llvm-svn: 193724
Introduce a new boolean setting enable-auto-oneliner
This setting if set to false will force LLDB to not use the new compact one-line display
By default, one-line mode stays on, at least until we can be confident it works.
But now if it seriously impedes your workflow while it evolves/it works wonders but you still hate it, there's a way to turn it off
llvm-svn: 193450
This check was overly strict. Relax it.
While one could conceivably want nested one-lining:
(Foo) aFoo = (x = 1, y = (t = 3, q = “Hello), z = 3.14)
the spirit of this feature is mostly to make *SMALL LINEAR* structs come out more compact.
Aggregates with children and no summary for now just disable the one-lining. Define a one-liner summary to override :)
llvm-svn: 193218
Extend DummySyntheticProvider to actually use debug-info vended children as the source of information
Make Python synthetic children either be valid, or fallback to the dummy, like their C++ counterparts
This allows LLDB to actually stop bailing out upon encountering an invalid synthetic children provider front-end, and still displaying the non synthetized ivar info
llvm-svn: 192741
Formats (as in "type format") are now included in categories
The only bit missing is caching formats along with synthetic children and summaries, which might be now desirable
llvm-svn: 192217
This radar extends the notion of one-liner summaries to automagically apply in a few interesting cases
More specifically, this checkin changes the printout of ValueObjects to print on one-line (as if type summary add -c had been applied) iff:
this ValueObject does not have a summary
its children have no synthetic children
its children are not a non-empty base class without a summary
its children do not have a summary that asks for children to show up
the aggregate length of all the names of all the children is <= 50 characters
you did not ask to see the types during a printout
your pointer depth is 0
This is meant to simplify the way LLDB shows data on screen for small structs and similarly compact data types (e.g. std::pair<int,int> anyone?)
Feedback is especially welcome on how the feature feels and corner cases where we should apply this printout and don't (or viceversa, we are applying it when we shouldn't be)
llvm-svn: 191996
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
SVN r189964 provided a sample Python script to inspect unordered(multi){set|map} with synthetic children, contribued by Jared Grubb
This checkin converts that sample script to a C++ provider built into LLDB
A test case is also provided
llvm-svn: 190564
A long time ago we start with clang types that were created by the symbol files and there were many functions in lldb_private::ClangASTContext that helped. Later we create ClangASTType which contains a clang::ASTContext and an opauque QualType, but we didn't switch over to fully using it. There were a lot of places where we would pass around a raw clang_type_t and also pass along a clang::ASTContext separately. This left room for error.
This checkin change all type code over to use ClangASTType everywhere and I cleaned up the interfaces quite a bit. Any code that was in ClangASTContext that was type related, was moved over into ClangASTType. All code that used these types was switched over to use all of the new goodness.
llvm-svn: 186130
Also, print the cache hits statistics if the log is in debugging mode vs. LLDB being a debug build - this should make it easier to gather useful metrics on cache success rate for real users
llvm-svn: 184900
Modifying our data formatters matching algorithm to ensure that "const X*" is treated as equivalent to "X*"
Also, a couple improvements to the "lldb types" logging
llvm-svn: 184215
Add support for half-floats, as specified by IEEE-754-2008
With this checkin, you can now say:
(lldb) x/7hf foo
to read 7 half-floats at address foo
llvm-svn: 183716
Adding data formatters for std::set, std::multiset and std::multimap for libc++
The underlying data structure is the same as std::map, so this change is very minimal and mostly consists of test cases
llvm-svn: 183323
settings set use-color [false|true]
settings set prompt "${ansi.bold}${ansi.fg.green}(lldb)${ansi.normal} "
also "--no-use-colors" on the command prompt
llvm-svn: 182609
Make a summary format for libc++ STL containers that shows the number of items as before, but also shows the pointer value for pointer-to-container
llvm-svn: 181236
Improvements to the std::map data formatter to recognize when invalid memory is being explored and bail out instead of looping for a potentially very long time
llvm-svn: 181044
The user was trying to obtain the address-of an std::vector and the experience was more painful than necessary because data formatters were kicking in for vector* objects
We got this right for libc++ - we should get it right for libstdc++ too
llvm-svn: 180219
This checkin reverts NSString to the old behavior when appropriate, and cleans up the syntax to call the UTF Reader&Dumper function
Incidentally, add a "-d" command-line flag to redo.py with the same semantics as "-d" in dotest.py
llvm-svn: 180141
This prevents unbounded reads (i.e. reads of GetMaximumSizeOfStringSummary() bytes)
from causing test failures (i.e. due to ptrace EIO or EFAULT on Linux).
Note that ReadCStringFromMemory is marked as deprecated because the loop that calls
ReadMemory does not continue until the string has been completely read.
The expected behavior is to read until until max_bytes or a null terminator.
Note: As discussed on lldb-dev, further testing will be performed with ReadStringFromMemory
before further changes are made for users of ReadCStringFromMemory.
Thanks to Enrico, Matt and Andy for their review feedback.
llvm-svn: 179857
Introducing a negative cache for ObjCLanguageRuntime::LookupInCompleteClassCache()
This helps speed up the (common) case of us looking for classes that are hidden deep within Cocoa internals and repeatedly failing at finding type information for them.
In order for this to work, we need to clean this cache whenever debug information is added. A new symbols loaded event is added that is triggered with add-dsym (before modules loaded would be triggered for both adding modules and adding symbols).
Interested parties can register for this event. Internally, we make sure to clean the negative cache whenever symbols are added.
Lastly, ClassDescriptor::IsTagged() has been refactored to GetTaggedPointerInfo() that also (optionally) returns info and value bits. In this way, data formatters can share tagged pointer code instead of duplicating the required arithmetic.
llvm-svn: 178897
The __NSArrayI synthetic children provider was running expressions to generate children, which is inefficient for large amounts of data
Reimplementing to use a faster algorithm
llvm-svn: 178729
Reimplemented the NSDictionary synthetic children provider for added performance.
Instead of generating pairs by running an expression, we now create a pair type using clang-level APIs and fill in a buffer with the pointers to key and value
This strategy takes the time required to dump a 10k items __NSDictionaryM from ~45s to <4s
llvm-svn: 178601
Fixing a bug where LLDB was not handling correctly CFStrings that have an explicit length but no NULL terminator
The data formatter was showing garbled data as part of the summary
The fix is to explicitly figure out the explicit length if we need to (bitfields tell us when that is the case) and use that as a size delimiter
llvm-svn: 178577
LLDB is crashing when logging is enabled from lldb-perf-clang. This has to do with the global destructor chain as the process and its threads are being torn down.
All logging channels now make one and only one instance that is kept in a global pointer which is never freed. This guarantees that logging can correctly continue as the process tears itself down.
llvm-svn: 178191
The algorithm to access an item in a __NSArrayM was not reacting properly to deletions
The fix is to use a smarter formula that accounts for items shifting and the resulting notion of offsets in the table
llvm-svn: 178076
- Making an error message more consistent
- Ensuring the element size is not zero before using it in a modulus
- Properly using target settings to cap the std::list element count
- Removing spurious element size calculations that were unused
- Removing spurious capping in std::map
llvm-svn: 178057
- generate-vers.pl has to be called by cmake to generate the version number
- parallel builds not yet supported; dependency on clang must be explicitly specified
Tested on Linux.
- Building on Mac will require code-signing logic to be implemented.
- Building on Windows will require OS-detection logic and some selective directory inclusion
Thanks to Carlo Kok (who originally prepared these CMakefiles for Windows) and Ben Langmuir
who ported them to Linux!
llvm-svn: 175795
Adding data formatters for iterators for std::map and std::vector (both libc++ and libstdcpp)
This does not include reverse iterators since they are both trickier (due to requirements the standard imposes on them) and much less useful
llvm-svn: 175787
Split some NS* formatters in their own source files
Refactored a utility function for the C++ formatters to use
Fixed the skip-summary test case to be explicit about requiring libstdc++ for operation
llvm-svn: 175323
The SEL data formatter was working hard to ensure that pointers-to-selectors could be formatted by the same block of code. In that effort, we were taking the address-of a SEL.
This operation fails when the SEL lives in a register, and was causing problems.
The formatter has been fixed to work correctly without assuming &selector will be a valid object.
llvm-svn: 175227
Synthetic children and summary for std::vector<bool> (for both libcxx and libstdcpp).
std::vector<bool> is a special case and is custom-implemented to be a vector of bits, which means we failed to handle it with the standard std::vector<T> formatter.
This checkin provides custom formatters that work correctly
llvm-svn: 174333
Data formatters now cache themselves.
This commit provides a new formatter cache mechanism. Upon resolving a formatter (summary or synthetic), LLDB remembers the resolution for later faster retrieval.
Also moved the data formatters subsystem from the core to its own group and folder for easier management, and done some code reorganization.
The ObjC runtime v1 now returns a class name if asked for the dynamic type of an object. This is required for formatters caching to work with the v1 runtime.
Lastly, this commit disposes of the old hack where ValueObjects had to remember whether they were queried for formatters with their static or dynamic type.
Now the ValueObjectDynamicValue class works well enough that we can use its dynamic value setting for the same purpose.
llvm-svn: 173728