Summary:
Instead of iterating over our vector of functions, we might as well use a map here to
directly get the function we need.
Thanks to Vedant for pointing this out.
Reviewers: vsk
Reviewed By: vsk
Subscribers: mgrang, lldb-commits
Differential Revision: https://reviews.llvm.org/D50225
llvm-svn: 339504
Summary:
I set up a new review, because not all the code I touched was marked as a change in old one anymore.
In preparation for this review, there were two earlier ones:
* https://reviews.llvm.org/D49612 introduced the ItaniumPartialDemangler to LLDB demangling without conceptual changes
* https://reviews.llvm.org/D49909 added a unit test that covers all relevant code paths in the InitNameIndexes() function
Primary goals for this patch are:
(1) Use ItaniumPartialDemangler's rich mangling info for building LLDB's name index.
(2) Provide a uniform interface.
(3) Improve indexing performance.
The central implementation in this patch is our new function for explicit demangling:
```
const RichManglingInfo *
Mangled::DemangleWithRichManglingInfo(RichManglingContext &, SkipMangledNameFn *)
```
It takes a context object and a filter function and provides read-only access to the rich mangling info on success, or otherwise returns null. The two new classes are:
* `RichManglingInfo` offers a uniform interface to query symbol properties like `getFunctionDeclContextName()` or `isCtorOrDtor()` that are forwarded to the respective provider internally (`llvm::ItaniumPartialDemangler` or `lldb_private::CPlusPlusLanguage::MethodName`).
* `RichManglingContext` works a bit like `LLVMContext`, it the actual `RichManglingInfo` returned from `DemangleWithRichManglingInfo()` and handles lifetime and configuration. It is likely stack-allocated and can be reused for multiple queries during batch processing.
The idea here is that `DemangleWithRichManglingInfo()` acts like a gate keeper. It only provides access to `RichManglingInfo` on success, which in turn avoids the need to handle a `NoInfo` state in every single one of its getters. Having it stored within the context, avoids extra heap allocations and aids (3). As instantiations of the IPD the are considered expensive, the context is the ideal place to store it too. An efficient filtering function `SkipMangledNameFn` is another piece in the performance puzzle and it helps to mimic the original behavior of `InitNameIndexes`.
Future potential:
* `DemangleWithRichManglingInfo()` is thread-safe, IFF using different contexts in different threads. This may be exploited in the future. (It's another thing that it has in common with `LLVMContext`.)
* The old implementation only parsed and indexed Itanium mangled names. The new `RichManglingInfo` can be extended for various mangling schemes and languages.
One problem with the implementation of RichManglingInfo is the inaccessibility of class `CPlusPlusLanguage::MethodName` (defined in source/Plugins/Language/..), from within any header in the Core components of LLDB. The rather hacky solution is to store a type erased reference and cast it to the correct type on access in the cpp - see `RichManglingInfo::get<ParserT>()`. At the moment there seems to be no better way to do it. IMHO `CPlusPlusLanguage::MethodName` should be a top-level class in order to enable forward delcarations (but that is a rather big change I guess).
First simple profiling shows a good speedup. `target create clang` now takes 0.64s on average. Before the change I observed runtimes between 0.76s an 1.01s. This is still no bulletproof data (I only ran it on one machine!), but it's a promising indicator I think.
Reviewers: labath, jingham, JDevlieghere, erik.pilkington
Subscribers: zturner, clayborg, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D50071
llvm-svn: 339291
This change improves the logging for the lldb.module category to note a few interesting cases:
1. Local object file found, but specs not matching
2. Local object file not found, using a placeholder module
The handling and logging for the cases wehre we fail to load compressed dwarf
symbols is also improved.
Differential Revision: https://reviews.llvm.org/D50274
llvm-svn: 339161
These three classes have no external dependencies, but they are used
from various low-level APIs. Moving them down to Utility improves
overall code layering (although it still does not break any particular
dependency completely).
The XCode project will need to be updated after this change.
Differential Revision: https://reviews.llvm.org/D49740
llvm-svn: 339127
Summary: `IsEmpty()` and `operator bool() == false` have equal semantics. Usage in Mangled::GetDemangledName() was incorrect. What it actually wants is a check for null-string. Split this off of D50071 and added a test to clarify usage.
Reviewers: labath, jingham
Subscribers: erik.pilkington, lldb-commits
Differential Revision: https://reviews.llvm.org/D50327
llvm-svn: 339014
Summary:
This patch allows LLDB's Stream class to count the bytes it has written to so far.
There are two major motivations for this patch:
The first one is that this will allow us to get rid of all the handwritten byte counting code
we have in LLDB so far. Examples for this are pretty much all functions in LLDB that
take a Stream to write to and return a size_t, which usually represents the bytes written.
By moving to this centralized byte counting mechanism, we hopefully can avoid some
tricky errors that happen when some code forgets to count the written bytes while
writing something to a stream.
The second motivation is that this is needed for the migration away from LLDB's `Stream`
and towards LLVM's `raw_ostream`. My current plan is to start offering a fake raw_ostream
class that just forwards to a LLDB Stream.
However, for this raw_ostream wrapper we need to fulfill the raw_ostream interface with
LLDB's Stream, which currently lacks the ability to count the bytes written so far (which
raw_ostream exposes by it's `tell()` method). By adding this functionality it is trivial to start
rolling out our raw_ostream wrapper (and then eventually completely move to raw_ostream).
Also, once this fake raw_ostream is available, we can start replacing our own code writing
to LLDB's Stream by LLVM code writing to raw_ostream. The best example for this is the
LEB128 encoding we currently ship, which can be replaced with by LLVM's version which
accepts an raw_ostream.
From the point of view of the pure source changes this test does, we essentially just renamed
the Write implementation in Stream to `WriteImpl` while the `Write` method everyone is using
to write its raw bytes is now just forwarding and counting the written bytes.
Reviewers: labath, davide
Reviewed By: labath
Subscribers: JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D50159
llvm-svn: 338733
Summary:
This patch adds syntax highlighting support to LLDB. When enabled (and lldb is allowed
to use colors), printed source code is annotated with the ANSI color escape sequences.
So far we have only one highlighter which is based on Clang and is responsible for all
languages that are supported by Clang. It essentially just runs the raw lexer over the input
and then surrounds the specific tokens with the configured escape sequences.
Reviewers: zturner, davide
Reviewed By: davide
Subscribers: labath, teemperor, llvm-commits, mgorny, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D49334
llvm-svn: 338662
Summary:
We currently allow any completion handler to read and manipulate the list of matches we
calculated so far. This leads to a few problems:
Firstly, a completion handler's logic can now depend on previously calculated results
by another handlers. No completion handler should have such an implicit dependency,
but the current API makes it likely that this could happen (or already happens). Especially
the fact that some completion handler deleted all previously calculated results can mess
things up right now.
Secondly, all completion handlers have knowledge about our internal data structures with
this API. This makes refactoring this internal data structure much harder than it should be.
Especially planned changes like the support of descriptions for completions are currently
giant patches because we have to refactor every single completion handler.
This patch narrows the contract the CompletionRequest has with the different handlers to:
1. A handler can suggest a completion.
2. A handler can ask how many suggestions we already have.
Point 2 obviously means we still have a dependency left between the different handlers, but
getting rid of this is too large to just append it to this patch.
Otherwise this patch just completely hides the internal StringList to the different handlers.
The CompletionRequest API now also ensures that the list of completions is unique and we
don't suggest the same value multiple times to the user. This property has been so far only
been ensured by the `Option` handler, but is now applied globally. This is part of this patch
as the OptionHandler is no longer able to implement this functionality itself.
Reviewers: jingham, davide, labath
Reviewed By: davide
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D49322
llvm-svn: 338151
Summary:
Replace the existing combination of FastDemangle and the fallback to llvm::itaniumDemangle() with LLVM's new ItaniumPartialDemangler. It slightly reduces complexity and slightly improves performance, but doesn't introduce conceptual changes. This patch is preparing for more fundamental improvements on LLDB's demangling approach.
Reviewers: friss, jingham, erik.pilkington, labath, clayborg, mgorny, davide, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: teemperor, JDevlieghere, labath, clayborg, davide, lldb-commits, mgorny, erik.pilkington
Differential Revision: https://reviews.llvm.org/D49612
llvm-svn: 337931
Summary:
The dump function was the only part of this class which depended on
high-level functionality. This was due to the DumpDataExtractor
function, which uses info from a running target to control dump format
(although, RegisterValue doesn't really use the high-level part of
DumpDataExtractor).
This patch follows the same approach done for the DataExtractor class,
and extracts the dumping code into a separate function/file. This file
can stay in the higher level code, while the RegisterValue class and
anything that does not depend in dumping can stay go to lower layers.
The XCode project will need to be updated after this patch.
Reviewers: zturner, jingham, clayborg
Subscribers: lldb-commits, mgorny
Differential Revision: https://reviews.llvm.org/D48351
llvm-svn: 337832
The synthetic child providers for these classes had a type expression that matched
pointers & references to the type, but the Front End only worked on the actual object.
I fixed this by adding a way for the Synthetic Child FrontEnd provider to request dereference,
and then had these formatters use that mode.
<rdar://problem/40849836>
Differential Revision: https://reviews.llvm.org/D49279
llvm-svn: 337035
Summary:
As suggested in D48796, this patch replaces even more internal calls that were using the old
completion API style with a single CompletionRequest. In some cases we also pass an option
vector/index, but as we don't always have this information, it currently is not part of the
CompletionRequest class.
The constructor of the CompletionRequest is now also more sensible. You only pass the
user input, cursor position and your list of matches to the request and the rest will be
inferred (using the same code we used before to calculate this). You also have to pass these
match window parameters to it, even though they are unused right now.
The patch shouldn't change any behavior.
Reviewers: jingham
Reviewed By: jingham
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D48976
llvm-svn: 337031
Scalar::MakeUnsigned was implemented incorrectly so it didn't
really change the sign of the type (leaving signed types signed).
This showed up as a misevaluation when IR-interpreting urem but
it's likely to arise in other contexts.
This commit fixes the definition, and adds a test to make
sure this won't regress in future (hopefully).
Fixes rdar://problem/42038760 and LLVM PR38076
Differential Revision: https://reviews.llvm.org/D49155
llvm-svn: 336872
If we have a function with signature f(addr_t, AddressClass), it is easy to muddle up the order of arguments without any warnings from compiler. 'enum class' prevents passing integer in place of AddressClass and vice versa.
llvm-svn: 335599
StringConvert was the only non-Utility dependency of this class. Getting
rid of it means it will be easy to move this class to a lower layer.
While I was in there, I also added a couple of unit tests for the Scalar
string conversion function.
llvm-svn: 335060
Summary:
Instead of a function taking an enum value determining which path to
return, we now have a suite of functions, each returning a single path
kind. This makes it easy to move the python-path function into a
specific plugin in a follow-up commit.
All the users of GetLLDBPath were converted to call specific functions
instead. Most of them were hard-coding the enum value anyway, so this
conversion was simple. The only exception was SBHostOS, which I've
changed to use a switch on the incoming enum value.
Reviewers: clayborg, zturner
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D48272
llvm-svn: 335052
Summary:
This has multiple advantages:
- we need only one function argument/instance variable instead of three
- no need to default initialize variables
- no custom parsing code
- VersionTuple has comparison operators, which makes version comparisons much
simpler
Reviewers: zturner, friss, clayborg, jingham
Subscribers: emaste, lldb-commits
Differential Revision: https://reviews.llvm.org/D47889
llvm-svn: 334950
With the recent changes in FileSpec to use LLVM's path style, it is
possible to delegate a bunch of common path operations to LLVM's path
helpers. This means we only have to maintain a single implementation and
at the same time can benefit from the efforts made by the rest of the
LLVM community.
This is part one of a set of patches. There was no obvious way to split
this so I just worked from top to bottom.
Differential revision: https://reviews.llvm.org/D48084
llvm-svn: 334615
This breaks the OpenFlags enumeration into two separate
enumerations: OpenFlags and CreationDisposition. The first
controls the behavior of the API depending on whether or not
the target file already exists, and is not a flags-based
enum. The second controls more flags-like values.
This yields a more easy to understand API, while also allowing
flags to be passed to the openForRead api, where most of the
values didn't make sense before. This also makes the apis more
testable as it becomes easy to enumerate all the configurations
which make sense, so I've added many new tests to exercise all
the different values.
llvm-svn: 334221
In r331719, I changed Module::FindTypes not to limit the amount
of types returned by the Symbol provider, because we want all
possible matches to be able to filter them. In one code path,
the filtering was applied to the TypeList without changing the
number of types that gets returned. This is turn could cause
consumers to access beyond the end of the TypeList.
This patch fixes this case and also adds an assertion to
TypeList::GetTypeAtIndex to catch those obvious programming
mistakes.
Triggering the condition in which we performed the incorrect
access was not easy. It happened a lot in mixed Swift/ObjectiveC
code, but I was able to trigger it in pure Objective C++ although
in a contrieved way.
rdar://problem/40254997
llvm-svn: 333786
Summary:
As discussed in https://bugs.llvm.org/show_bug.cgi?id=37317,
FindGlobalVariables does not properly handle the case where
append=false. As this doesn't seem to be used in the tree, this patch
removes the parameter entirely.
Reviewers: clayborg, jingham, labath
Reviewed By: clayborg
Subscribers: aprantl, lldb-commits, kubamracek, JDevlieghere
Differential Revision: https://reviews.llvm.org/D46885
Patch by Tom Tromey <ttromey@mozilla.com>.
llvm-svn: 333639
Summary: This resolves unnecessary the header dependency from
Core to DataFormatters. Patch is necessary for the introduction of
C++ modules to the LLDB build system.
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D47409
llvm-svn: 333342
The only reason this was here was so that Module could have a
function called CreateJITModule which created things in a special
order. Instead of making this specific to creating JIT modules,
I converted this into a template function that can create a module
for any type of object file plugin and just forwards arguments
through. Since the template is not instantiated in Core, the linker
(and header file) dependency moves to the point where it is
instantiated, which only happens in Expression. Conceptually, this
location also makes more sense for a dependency on ObjectFileJIT.
After all, we JIT expressions so it's no surprise that Expression
needs to make use of ObjectFileJIT.
Differential Revision: https://reviews.llvm.org/D47228
llvm-svn: 333143
In an effort to make the .debug_types patch smaller, breaking out the part that reads the .debug_types from object files into a separate patch
Differential Revision: https://reviews.llvm.org/D46529
llvm-svn: 331777
Summary:
... and fix one bug found this way. Currently, the test works not because
types are looked up correctly, but because by injecting local variables
we also materialize the types for Clang. If we disable the local variable
injection, then one check fails.
The reason of the failure is that FindTypes is run with max_matches==1
and this value is passed down to the symbol lookup functions. When the
search is performed only on the basename (like it's the case for an
entity defined in the root namespace), then the search will stop after
having found one match on the basename. But that match might be in a
namespace, we were really just looking up the basename in the accelerator
tables.
The solution is to not pass max_matches down, but to search without a
limit and let RemoveMismatchedTypes do its job afterwards. Note the
patch includes 2 hunks with the same change, but only the latter is
tested. I couldn't find a way to create a testcase for the other
branch of the if ('image lookup -t' allows me to get there, but it
only ever returns one type anyway).
Reviewers: clayborg, jingham
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D46548
llvm-svn: 331719
This is a change that only affects Swift and is NFC for the language
plugins on llvm.org. In Swift, we can have global variables with a
location such as DW_OP_addr <addr> DW_OP_deref. The DWARF expression
evaluator doesn't know how to apply a DW_OP_deref to a file address,
but at the very end we convert the file address into a load address.
This patch moves the file->load address conversion to right after the
result of the DW_OP_addr is pushed onto the stack so that a subsequent
DW_OP_deref (and potentially other operations) can be interpreted.
rdar://problem/39767528
Differential revision: https://reviews.llvm.org/D46362
llvm-svn: 331492
This is a change that only affects Swift and is NFC for the language
plugins on llvm.org. In Swift, we can have global variables with a
location such as DW_OP_addr <addr> DW_OP_deref. The DWARF expression
evaluator doesn't know how to apply a DW_OP_deref to a file address,
but at the very end we convert the file address into a load address.
This patch moves the file->load address conversion to right after the
result of the DW_OP_addr is pushed onto the stack so that a subsequent
DW_OP_deref (and potentially other operations) can be interpreted.
rdar://problem/39767528
Differential revision: https://reviews.llvm.org/D46362
llvm-svn: 331462
This change adds support for two types of Minidump CodeView records:
PDB70 (reference: https://crashpad.chromium.org/doxygen/structcrashpad_1_1CodeViewRecordPDB70.html)
This is by far the most common record type.
ELF BuildID (found in Breakpad/Crashpad generated minidumps)
This would set a proper UUID for placeholder modules, in turn enabling
an accurate match with local module images.
Differential Revision: https://reviews.llvm.org/D46292
llvm-svn: 331394
that takes a prefix string. This simplifies the implementation and
allows plugins such as the Swift plugin to supply different prefixes
for return and error variables.
rdar://problem/39299889
Differential Revision: https://reviews.llvm.org/D46088
llvm-svn: 331235
so it can be shared across multiple language plugins.
In a multi-language project it is counterintuitive to have a result
variables reuse numbers just because they are using a different
language plugin in LLDB (but not for example, when they are
Objective-C versus C++, since they are both handled by Clang).
This is NFC on llvm.org except for the Go plugin.
rdar://problem/39299889
Differential Revision: https://reviews.llvm.org/D46083
llvm-svn: 331234
This patch fixes an issue where we weren't looking for exact matches in the expression parser and also fixed the type lookup logic in the Module.cpp. Tests added to make sure we don't regress.
Differential Revision: https://reviews.llvm.org/D46128
llvm-svn: 331227
This is intended as a clean up after the big clang-format commit
(r280751), which unfortunately resulted in many of the comment
paragraphs in LLDB being very hard to read.
FYI, the script I used was:
import textwrap
import commands
import os
import sys
import re
tmp = "%s.tmp"%sys.argv[1]
out = open(tmp, "w+")
with open(sys.argv[1], "r") as f:
header = ""
text = ""
comment = re.compile(r'^( *//) ([^ ].*)$')
special = re.compile(r'^((([A-Z]+[: ])|([0-9]+ )).*)|(.*;)$')
for line in f:
match = comment.match(line)
if match and not special.match(match.group(2)):
# skip intentionally short comments.
if not text and len(match.group(2)) < 40:
out.write(line)
continue
if text:
text += " " + match.group(2)
else:
header = match.group(1)
text = match.group(2)
continue
if text:
filled = textwrap.wrap(text, width=(78-len(header)),
break_long_words=False)
for l in filled:
out.write(header+" "+l+'\n')
text = ""
out.write(line)
os.rename(tmp, sys.argv[1])
Differential Revision: https://reviews.llvm.org/D46144
llvm-svn: 331197
Always normalizing lldb_private::FileSpec paths will help us get a consistent results from comparisons when setting breakpoints and when looking for source files. This also removes a lot of complexity from the comparison routines. Modified the DWARF line table parser to use the normalized compile unit directory if needed.
Differential Revision: https://reviews.llvm.org/D45977
llvm-svn: 331049
Normally, LLDB is creating a high-fidelity representation of a live
process, including a list of modules and sections, with the
associated memory address ranges. In order to build the module and
section map LLDB tries to locate the local module image (object file)
and will parse it.
This does not work for postmortem debugging scenarios where the crash
dump (minidump in this case) was captured on a different machine.
Fortunately the minidump format encodes enough information about
each module's memory range to allow us to create placeholder modules.
This enables most LLDB functionality involving address-to-module
translations.
Also, we may want to completly disable the search for matching
local object files if we load minidumps unless we can prove that the
local image matches the one from the crash origin.
(not part of this change, see: llvm.org/pr35193)
Example: Identify the module from a stack frame PC:
Before:
thread #1, stop reason = Exception 0xc0000005 encountered at address 0x164d14
frame #0: 0x00164d14
frame #1: 0x00167c79
frame #2: 0x00167e6d
frame #3: 0x7510336a
frame #4: 0x77759882
frame #5: 0x77759855
After:
thread #1, stop reason = Exception 0xc0000005 encountered at address 0x164d14
frame #0: 0x00164d14 C:\Users\amccarth\Documents\Visual Studio 2013\Projects\fizzbuzz\Debug\fizzbuzz.exe
frame #1: 0x00167c79 C:\Users\amccarth\Documents\Visual Studio 2013\Projects\fizzbuzz\Debug\fizzbuzz.exe
frame #2: 0x00167e6d C:\Users\amccarth\Documents\Visual Studio 2013\Projects\fizzbuzz\Debug\fizzbuzz.exe
frame #3: 0x7510336a C:\Windows\SysWOW64\kernel32.dll
frame #4: 0x77759882 C:\Windows\SysWOW64\ntdll.dll
frame #5: 0x77759855 C:\Windows\SysWOW64\ntdll.dll
Example: target modules list
Before:
error: the target has no associated executable images
After:
[ 0] C:\Windows\System32\MSVCP120D.dll
[ 1] C:\Windows\SysWOW64\kernel32.dll
[ 2] C:\Users\amccarth\Documents\Visual Studio 2013\Projects\fizzbuzz\Debug\fizzbuzz.exe
[ 3] C:\Windows\System32\MSVCR120D.dll
[ 4] C:\Windows\SysWOW64\KERNELBASE.dll
[ 5] C:\Windows\SysWOW64\ntdll.dll
NOTE: the minidump format also includes the debug info GUID, so we can
fill-in the module UUID from it, but this part was excluded from this change
to keep the changes simple (the LLDB UUID is hardcoded to be either 16 or
20 bytes, while the CodeView GUIDs are normally 24 bytes)
Differential Revision: https://reviews.llvm.org/D45700
llvm-svn: 330302
Summary:
The Args class is used in plenty of places besides the command
interpreter (e.g., anything requiring an argc+argv combo, such as when
launching a process), so it needs to be in a lower layer. Now that the
class has no external dependencies, it can be moved down to the Utility
module.
This removes the last (direct) dependency from the Host module to
Interpreter, so I remove the Interpreter module from Host's dependency
list.
Reviewers: zturner, jingham, davide
Subscribers: mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D45480
llvm-svn: 330200
LLVM_ON_WIN32 is set exactly with MSVC and MinGW (but not Cygwin) in
HandleLLVMOptions.cmake, which is where _WIN32 defined too. Just use the
default macro instead of a reinvented one.
See thread "Replacing LLVM_ON_WIN32 with just _WIN32" on llvm-dev and cfe-dev.
No intended behavior change.
llvm-svn: 329697
Remove Scalar::Cast.
It was noted on the list that this method is unused. So, this patch
removes it.
Fix Scalar::Promote for most integer types
This fixes promotion of most integer types (128- and 256-bit types are
handled in a subsequent patch) to floating-point types. Previously
promotion was done bitwise, where value preservation is correct.
Fix Scalar::Promote for 128- and 256-bit integer types
This patch fixes the behavior of Scalar::Promote when trying to
perform a binary operation involving a 128- or 256-bit integer type
and a floating-point type. Now, the integer is cast to the floating
point type for the operation.
Patch by Tom Tromey!
Differential Revision: https://reviews.llvm.org/D44907
llvm-svn: 328985