Summary:
All changes are pretty straight-forward. I chose to use TimePoints with
second precision, as that is all that seems to be required here.
Reviewers: friss, zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25908
llvm-svn: 286358
The BitcodeReader no longer produces BitcodeDiagnosticInfo diagnostics.
The only remaining reference was in the gold plugin; the code there has been
dead since we stopped producing InvalidBitcodeSignature error codes in r225562.
While at it remove the InvalidBitcodeSignature error code.
llvm-svn: 286326
Previously support had been added for using CodeViewRecordIO
to read (deserialize) CodeView type records. This patch adds
support for writing those same records. With this patch,
reading and writing of CodeView type records finally uses a single
codepath.
Differential Revision: https://reviews.llvm.org/D26253
llvm-svn: 286304
Summary:
This patch uses the same approach added for inline asm in r285513 to
similarly prevent promotion/renaming of locals used or defined in module
level asm.
All static global values defined in normal IR and used in module level asm
should be included on either the llvm.used or llvm.compiler.used global.
The former were already being flagged as NoRename in the summary, and
I've simply added llvm.compiler.used values to this handling.
Module level asm may also contain defs of values. We need to prevent
export of any refs to local values defined in module level asm (e.g. a
ref in normal IR), since that also requires renaming/promotion of the
local. To do that, the summary index builder looks at all values in the
module level asm string that are not marked Weak or Global, which is
exactly the set of locals that are defined. A summary is created for
each of these local defs and flagged as NoRename.
This required adding handling to the BitcodeWriter to look at GV
declarations to see if they have a summary (rather than skipping them
all).
Finally, added an assert to IRObjectFile::CollectAsmUndefinedRefs to
ensure that an MCAsmParser is available, otherwise the module asm parse
would silently fail. Initialized the asm parser in the opt tool for use
in testing this fix.
Fixes PR30610.
Reviewers: mehdi_amini
Subscribers: johanengelen, krasin, llvm-commits
Differential Revision: https://reviews.llvm.org/D26146
llvm-svn: 286297
Unique ownership is just one possible ownership pattern for the memory buffer
underlying the bitcode reader. In practice, as this patch shows, ownership can
often reside at a higher level. With the upcoming change to allow multiple
modules in a single bitcode file, it will no longer be appropriate for
modules to generally have unique ownership of their memory buffer.
The C API exposes the ownership relation via the LLVMGetBitcodeModuleInContext
and LLVMGetBitcodeModuleInContext2 functions, so we still need some way for
the module to own the memory buffer. This patch does so by adding an owned
memory buffer field to Module, and using it in a few other places where it
is convenient.
Differential Revision: https://reviews.llvm.org/D26384
llvm-svn: 286214
As proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/106630.html
Move block info block state to a new class, BitstreamBlockInfo.
Clients may set the block info for a particular cursor with the
BitstreamCursor::setBlockInfo() method.
At this point BitstreamReader is not much more than a container for an
ArrayRef<uint8_t>, so remove it and replace all uses with direct uses
of memory buffers.
Differential Revision: https://reviews.llvm.org/D26259
llvm-svn: 286207
insufficient to populate the expected struct. Prior to this we already
bailed out of the routine when this situation comes up, so none of this
code had any effect.
If someone wants to bring it back to handle these cases, fixing the
earlier conditions and adding the necessary test cases that actually
exercises it, they can always revert this and go from there.
Both of these were noticed by PVS-Studio due to the identical (dead)
condition.
llvm-svn: 285989
in llvm-objdump for Mach-O files add the printing of the
ARM_THREAD_STATE64 in the same format as
otool-classic(1) on darwin.
To do this the 64-bit ARM general tread state
needed to be defined in include/llvm/Support/MachO.h .
rdar://28985800
llvm-svn: 285967
llvm-readobj.
Another bug caught by PVS-Studio.
It'd be nice to actually have a test for this, but I found it by
inspection from PVS-Studio.
llvm-svn: 285937
Using a pattern similar to that of YamlIO, this allows
us to have a single codepath for translating codeview
records to and from serialized byte streams. The
current patch only hooks this up to the reading of
CodeView type records. A subsequent patch will hook
it up for writing of CodeView type records, and then a
third patch will hook up the reading and writing of
CodeView symbols.
Differential Revision: https://reviews.llvm.org/D26040
llvm-svn: 285836
As proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/106595.html
This change also fixes an API oddity where BitstreamCursor::Read() would
return zero for the first read past the end of the bitstream, but would
report_fatal_error for subsequent reads. Now we always report_fatal_error
for all reads past the end. Updated clients to check for the end of the
bitstream before reading from it.
I also needed to add padding to the invalid bitcode tests in
test/Bitcode/. This is because the streaming interface was not checking that
the file size is a multiple of 4.
Differential Revision: https://reviews.llvm.org/D26219
llvm-svn: 285773
Summary:
This fixes a few things that used to work with a Makefile build, but were broken in cmake.
1. Treat MINGW like a Linux system.
2. The shlib should never contain other shared libraries.
Patch By: Valentin Churavy
Reviewers: axw, beanz
Subscribers: modocache, beanz, mgorny
Differential Revision: https://reviews.llvm.org/D25865
llvm-svn: 285737
Add the necessary definitions for RISC-V ELF files, including relocs. Also
make necessary trivial change to ELFYaml, llvm-objdump, and llvm-readobj in
order to work with RISC-V ELFs.
Differential Revision: https://reviews.llvm.org/D23557
llvm-svn: 285708
Summary:
There is no point to importing at -O0, since we won't inline. We should
also disable other cross-module optimizations.
(Plan to backport this fix to the 3.9 branch to fix PR30774)
Reviewers: pcc
Subscribers: johanengelen, mehdi_amini
Differential Revision: https://reviews.llvm.org/D25918
llvm-svn: 285648
DW_TAG_atomic_type was already included in Dwarf.defs and emitted correctly,
however Verifier didn't recognize it as valid.
Thus we introduce the following changes:
* Make DW_TAG_atomic_type valid tag for IR and DWARF (enabled only with -gdwarf-5)
* Add it to related docs
* Add DebugInfo tests
Differential Revision: https://reviews.llvm.org/D26144
llvm-svn: 285624
Modifying DWARFFormValue to remember the DWARFUnit that it was encoded with can simplify the usage of instances of this class. Previously users would have to try and pass in the same DWARFUnit that was used to decode the form value and there was a possibility that a different DWARFUnit might be supplied to the functions that extract values (strings, CU relative references, addresses) and cause problems. This fixes this potential issue by storing the DWARFUnit inside the DWARFFormValue so that this mistake can't be made. Instances of DWARFFormValue are not stored permanently and are used as temporary values, so the increase in size of an instance of DWARFFormValue isn't a big deal. This makes decoding form values more bullet proof and is a change that will be used by future modifications.
https://reviews.llvm.org/D26052
llvm-svn: 285594
Most of the version of report_error were quoting the filename and
printing a colon between the file name and the error message, but this
one wasn't doing either of those. Fix the output to be more
consistent.
llvm-svn: 285252
Usage:
llvm-xray extract <object file> [-o <filename or '-'>]
The tool gets the XRay instrumentation map from an object file and turns
it into YAML. We first support ELF64 sleds on x86_64 binaries, with
provision for supporting other supported platforms and formats later.
This is the first of a many-part change to fully implement the
`llvm-xray` tool.
We also define a subcommand registration and dispatch mechanism to be
used by other further subcommand implementations for llvm-xray.
Diffusion Revision: https://reviews.llvm.org/D21987
llvm-svn: 285165
Usage:
llvm-xray extract <object file> [-o <filename or '-'>]
The tool gets the XRay instrumentation map from an object file and turns
it into YAML. We first support ELF64 sleds on x86_64 binaries, with
provision for supporting other supported platforms and formats later.
This is the first of a many-part change to fully implement the
`llvm-xray` tool.
We also define a subcommand registration and dispatch mechanism to be
used by other further subcommand implementations for llvm-xray.
llvm-svn: 285155
This adds a new function to DebugInfo.cpp that takes an llvm::Module
as input and removes all debug info metadata that is not directly
needed for line tables, thus effectively stripping all type and
variable information from the module.
The primary motivation for this feature was the bitcode work flow
(cf. http://lists.llvm.org/pipermail/llvm-dev/2016-June/100643.html
for more background). This is not wired up yet, but will be in
subsequent patches. For testing, the new functionality is exposed to
opt with a -strip-nonlinetable-debuginfo option.
The secondary use-case (and one that works right now!) is as a
reduction pass in bugpoint. I added two new bugpoint options
(-disable-strip-debuginfo and -disable-strip-debug-types) to control
the new features. By default it will first attempt to remove all debug
information, then only the type info, and then proceed to hack at any
remaining MDNodes.
Thanks to Adrian Prantl for stewarding this patch!
llvm-svn: 285094
In an IR symbol table I would expect the comdats to be represented as:
- A table of strings, one for each comdat name.
- Each symbol has an optional index into that table.
The natural api for accessing that would be
InputFile:
ArrayRef<StringRef> getComdatTable() const;
Symbol:
int getComdatIndex() const;
This patch implements an API as close to that as possible. The
implementation on top of the current IRObjectFile is a bit hackish,
but should map just fine over a symbol table and is very convenient to
use.
llvm-svn: 285061
When we load coverage data from multiple objects, we don't have a way to
attribute a source object to a function record. Printing out the object
filename next to the source filename is already not very useful: soon,
it'll actually become misleading. Stop printing out the filename now.
llvm-svn: 285043
Summary:
Most of the changes are very straight-forward. The only choice I had to make was
to use second-precision time points in the Archive classes. I did this because
the archive files use that precision in the on-disk representation anyway.
Reviewers: rafael, zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25773
llvm-svn: 284974
Summary:
This is a follow-up to D25416. It removes all usages of TimeValue from
llvm/Support library (except for the actual TimeValue declaration), and replaces
them with appropriate usages of std::chrono. To facilitate this, I have added
small utility functions for converting time points and durations into appropriate
OS-specific types (FILETIME, struct timespec, ...).
Reviewers: zturner, mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25730
llvm-svn: 284966
iterating over an archive with object and non-object members that
would cause an Abort because to was not calling consumeError()
when the code was wanting to ignore a non-object file.
Found by Justin Bogner!
llvm-svn: 284867
Summary: This adds support for dumping the globals stream from PDB files using llvm-pdbdump, similar to the support we have for the publics stream.
Reviewers: ruiu, zturner
Subscribers: beanz, mgorny, modocache
Differential Revision: https://reviews.llvm.org/D25801
llvm-svn: 284861
the ARM_THREAD_STATE in the same format as
otool-classic(1) on darwin.
Also remove an extra space in printing the initprot to make
the output match otool-classic(1) on darwin.
rdar://28851457
llvm-svn: 284852
This was all using ArrayRef<>s before which presents a problem
when you want to serialize to or deserialize from an actual
PDB stream. An ArrayRef<> is really just a special case of
what can be handled with StreamInterface though (e.g. by using
a ByteStream), so changing this to use StreamInterface allows
us to plug in a PDB stream and get all the record serialization
and deserialization for free on a MappedBlockStream.
Subsequent patches will try to remove TypeTableBuilder and
TypeRecordBuilder in favor of class that operate on
Streams as well, which should allow us to completely merge
the reading and writing codepaths for both types and symbols.
Differential Revision: https://reviews.llvm.org/D25831
llvm-svn: 284762
Profile runtime can generate an empty raw profile (when there is no function in
the shared library). This empty profile is treated as a text format profile. A
test format profile without the flag of "#IR" is thought to be a clang
generated profile. So in llvm profile merging, we will get a bogus warning of
"Merge IR generated profile with Clang generated profile."
The fix here is to skip the empty profile (when the buffer size is 0) for
profile merge.
Reviewers: vsk, davidxl
Differential Revision: http://reviews.llvm.org/D25687
llvm-svn: 284659
Initializing a ThreadPool with ThreadCount = 1 spawns a thread even
though we don't need to. This is at least slower than it needs to be,
and at worst may somehow be exacerbating PR30735 (llvm-cov times out
on ARM bots).
As a follow-up, I'll try to add logic to llvm::ThreadPool to avoid
spawning a thread when ThreadCount = 1.
llvm-svn: 284621
Summary:
Changes default backend parallelism from thread::hardware_concurrency to
the new llvm::heavyweight_hardware_concurrency, which for X86 Linux
defaults to the number of physical cores (and will fall back to
thread::hardware_concurrency otherwise). This avoid oversubscribing
the physical cores using hyperthreading.
Reviewers: mehdi_amini, pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25775
llvm-svn: 284618
This is just a quick utility handy for getting rough summaries of types
in a given object or dwo file. I've been using it to investigate the
amount of type info redundancy across a project build, for example.
llvm-svn: 284537
debugger.
When bugpoint hacks at a testcase it may at one point create illegal
debug info metadata that won't even pass the Verifier. A bugpoint
*driver* built with assertions should not assert on it, but reject the
malformed intermediate step and continue to do its job.
llvm-svn: 284490
Module inline asm was always being linked/concatenated
when running the IRLinker. This is correct for full LTO but not when
we are importing for ThinLTO, as it can result in multiply defined
symbols when the module asm defines a global symbol.
In order to test with llvm-lto2, I had to work around PR30396,
where a symbol that is defined in module assembly but defined in the
LLVM IR appears twice. Added workaround to llvm-lto2 with a FIXME.
Fixes PR30610.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25359
llvm-svn: 284030
The core of the change is supposed to be NFC, however it also fixes
what I believe was an undefined behavior when calling:
va_start(ValueArgs, Desc);
with Desc being a StringRef.
Differential Revision: https://reviews.llvm.org/D25342
llvm-svn: 283671
We need to add an entry in the combined-index for modules that have
a hash but otherwise empty summary, this is needed so that we can
get the hash for the module.
Also, if no entry is present in the combined index for a module, we
need to skip it when trying to compute a cache entry.
Differential Revision: https://reviews.llvm.org/D25300
llvm-svn: 283654
This is the first step towards round-tripping symbol information,
and thusly being able to write symbol information to a PDB.
This patch writes the symbol information for each compiland to
the Yaml when running in pdb2yaml mode. There's still some loose
ends, such as what to do about relocations (necessary in order to
print linkage names), how to print enums with friendly names, and
how to give the dumper access to the StringTable, but this is a
good first start.
llvm-svn: 283641
Because screen space is precious, if an optimization (vectorization, for
example) never happens, don't leave empty space for the associated markers on
every line of the output. This makes the output much more compact, and allows
for the later inclusion of markers for more (although perhaps rare)
optimizations.
llvm-svn: 283626
Type visitor code had already been refactored previously to
decouple the visitor and the visitor callback interface. This
was necessary for having the flexibility to visit in different
ways (for example, dumping to yaml, reading from yaml, dumping
to ScopedPrinter, etc).
This patch merely implements the same visitation pattern for
symbol records that has already been implemented for type records.
llvm-svn: 283609
In the left part of the reports, we have things like U<number>; if some of
these numbers use more digits than others, we don't want a space in between the
U and the start of the number. Instead, the space should come afterward. This
way it is clear that the number goes with the U and not any other optimization
indicator that might come later on the line.
Tests committed in r283518.
llvm-svn: 283519
This adds a new function to DebugInfo.cpp that takes an llvm::Module
as input and removes all debug info metadata that is not directly
needed for line tables, thus effectively stripping all type and
variable information from the module.
The primary motivation for this feature was the bitcode work flow
(cf. http://lists.llvm.org/pipermail/llvm-dev/2016-June/100643.html
for more background). This is not wired up yet, but will be in
subsequent patches. For testing, the new functionality is exposed to
opt with a -strip-nonlinetable-debuginfo option.
The secondary use-case (and one that works right now!) is as a
reduction pass in bugpoint. I added two new bugpoint options
(-disable-strip-debuginfo and -disable-strip-debug-types) to control
the new features. By default it will first attempt to remove all debug
information, then only the type info, and then proceed to hack at any
remaining MDNodes.
llvm-svn: 283473
When there are multiple optimizations on one line, record the vectorization
factors, etc. correctly (instead of incorrectly substituting default values).
llvm-svn: 283443
How code is optimized sometimes, perhaps often, depends on the context into
which it was inlined. This change allows llvm-opt-report to track the
differences between the optimizations performed, or not, in different contexts,
and when these differ, display those differences.
For example, this code:
$ cat /tmp/q.cpp
void bar();
void foo(int n) {
for (int i = 0; i < n; ++i)
bar();
}
void quack() {
foo(4);
}
void quack2() {
foo(4);
}
will now produce this report:
< /home/hfinkel/src/llvm/test/tools/llvm-opt-report/Inputs/q.cpp
2 | void bar();
3 | void foo(int n) {
[[
> foo(int):
4 | for (int i = 0; i < n; ++i)
> quack(), quack2():
4 U4 | for (int i = 0; i < n; ++i)
]]
5 | bar();
6 | }
7 |
8 | void quack() {
9 I | foo(4);
10 | }
11 |
12 | void quack2() {
13 I | foo(4);
14 | }
15 |
Note that the tool has demangled the function names, and grouped the reports
associated with line 4. This shows that the loop on line 4 was unrolled by a
factor of 4 when inlined into the functions quack() and quack2(), but not in
the function foo(int) itself.
llvm-svn: 283402
LLVM now has the ability to record information from optimization remarks in a
machine-consumable YAML file for later analysis. This can be enabled in opt
(see r282539), and D25225 adds a Clang flag to do the same. This patch adds
llvm-opt-report, a tool to generate basic optimization "listing" files
(annotated sources with information about what optimizations were performed)
from one of these YAML inputs.
D19678 proposed to add this capability directly to Clang, but this more-general
YAML-based infrastructure was the direction we decided upon in that review
thread.
For this optimization report, I focused on making the output as succinct as
possible while providing information on inlining and loop transformations. The
goal here is that the source code should still be easily readable in the
report. My primary inspiration here is the reports generated by Cray's tools
(http://docs.cray.com/books/S-2496-4101/html-S-2496-4101/z1112823641oswald.html).
These reports are highly regarded within the HPC community. Intel's compiler,
for example, also has an optimization-report capability
(https://software.intel.com/sites/default/files/managed/55/b1/new-compiler-optimization-reports.pdf).
$ cat /tmp/v.c
void bar();
void foo() { bar(); }
void Test(int *res, int *c, int *d, int *p, int n) {
int i;
#pragma clang loop vectorize(assume_safety)
for (i = 0; i < 1600; i++) {
res[i] = (p[i] == 0) ? res[i] : res[i] + d[i];
}
for (i = 0; i < 16; i++) {
res[i] = (p[i] == 0) ? res[i] : res[i] + d[i];
}
foo();
foo(); bar(); foo();
}
D25225 adds -fsave-optimization-record (and
-fsave-optimization-record=filename), and this would be used as follows:
$ clang -O3 -o /tmp/v.o -c /tmp/v.c -fsave-optimization-record
$ llvm-opt-report /tmp/v.yaml > /tmp/v.lst
$ cat /tmp/v.lst
< /tmp/v.c
2 | void bar();
3 | void foo() { bar(); }
4 |
5 | void Test(int *res, int *c, int *d, int *p, int n) {
6 | int i;
7 |
8 | #pragma clang loop vectorize(assume_safety)
9 V4,2 | for (i = 0; i < 1600; i++) {
10 | res[i] = (p[i] == 0) ? res[i] : res[i] + d[i];
11 | }
12 |
13 U16 | for (i = 0; i < 16; i++) {
14 | res[i] = (p[i] == 0) ? res[i] : res[i] + d[i];
15 | }
16 |
17 I | foo();
18 |
19 | foo(); bar(); foo();
I | ^
I | ^
20 | }
Each source line gets a prefix giving the line number, and a few columns for
important optimizations: inlining, loop unrolling and loop vectorization. An
'I' is printed next to a line where a function was inlined, a 'U' next to an
unrolled loop, and 'V' next to a vectorized loop. These are printed on the
relevant code line when that seems unambiguous, or on subsequent lines when
multiple potential options exist (messages, both positive and negative, from
the same optimization with different column numbers are taken to indicate
potential ambiguity). When on subsequent lines, a '^' is output in the relevant
column.
Annotated source for all relevant input files are put into the listing file
(each starting with '<' and then the file name).
You can disable having the unrolling/vectorization factors appear by using the
-s flag.
Differential Revision: https://reviews.llvm.org/D25262
llvm-svn: 283398
It got disconnected during the cmake conversion. For Miscompilation.cpp,
it was purely advisory for the user and the ToolRunner.cpp version was
trying to compensate for libs and bins in the same directory, which
hasn't been the case for a very long time.
llvm-svn: 283022
When we create a PDB file using PDBFileBuilder, the information
in the superblock, such as the size of the resulting file, is not
available.
Previously, PDBFileBuilder::initialize took a superblock assuming
that all the members of the struct are correct. That is useful when
you want to restore the exact information from a YAML file, but
that's probably the only use case in which that is useful.
When we are creating a PDB file on the fly, we have to backfill the
members.
This patch redefines PDBFileBuilder::initialize to take only a
block size. Now all the other members are left as default values,
so that they'll be updated when commit() is called.
Differential Revision: https://reviews.llvm.org/D25108
llvm-svn: 282944
WritableStream needs the exact file size to open a file, but
until we fix the final layout of a PDB file, we don't know the
size of the file.
This patch changes the parameter type of PDBFileBuilder::commit
to solve that chiecken-and-egg problem. Now the function opens
a file after fixing the layout, so it can create a file with the
exact size.
Differential Revision: https://reviews.llvm.org/D25107
llvm-svn: 282940
Summary:
Answering any meaningful questions about .sancov files requires
accessing symbol information from the corresponding binary.
This change introduces a separate intermediate data structure and
format: symbolized coverage. It contains all symbol information that
is required to answer common queries:
- merging
- coverd/uncovered files and functions
- line status.
Also removing the html report functionality from sancov: generated
HTML files are too huge, and a different approach is required.
Maintaining this half-working approach in the C++ is painful.
Differential Revision: https://reviews.llvm.org/D24947
llvm-svn: 282639
Coverage reports for gigabyte-sized binaries are huge. There's no
practical reason to generate them statically.
Implementing an experiment http coverage report server. The server
loads .symcov file and serves interactive coverage pages.
llvm-svn: 282637
(Re-committed after moving the template specialization under the yaml
namespace. GCC was complaining about this.)
This allows various presentation of this data using an external tool.
This was first recommended here[1].
As an example, consider this module:
1 int foo();
2 int bar();
3
4 int baz() {
5 return foo() + bar();
6 }
The inliner generates these missed-optimization remarks today (the
hotness information is pulled from PGO):
remark: /tmp/s.c:5:10: foo will not be inlined into baz (hotness: 30)
remark: /tmp/s.c:5:18: bar will not be inlined into baz (hotness: 30)
Now with -pass-remarks-output=<yaml-file>, we generate this YAML file:
--- !Missed
Pass: inline
Name: NotInlined
DebugLoc: { File: /tmp/s.c, Line: 5, Column: 10 }
Function: baz
Hotness: 30
Args:
- Callee: foo
- String: will not be inlined into
- Caller: baz
...
--- !Missed
Pass: inline
Name: NotInlined
DebugLoc: { File: /tmp/s.c, Line: 5, Column: 18 }
Function: baz
Hotness: 30
Args:
- Callee: bar
- String: will not be inlined into
- Caller: baz
...
This is a summary of the high-level decisions:
* There is a new streaming interface to emit optimization remarks.
E.g. for the inliner remark above:
ORE.emit(DiagnosticInfoOptimizationRemarkMissed(
DEBUG_TYPE, "NotInlined", &I)
<< NV("Callee", Callee) << " will not be inlined into "
<< NV("Caller", CS.getCaller()) << setIsVerbose());
NV stands for named value and allows the YAML client to process a remark
using its name (NotInlined) and the named arguments (Callee and Caller)
without parsing the text of the message.
Subsequent patches will update ORE users to use the new streaming API.
* I am using YAML I/O for writing the YAML file. YAML I/O requires you
to specify reading and writing at once but reading is highly non-trivial
for some of the more complex LLVM types. Since it's not clear that we
(ever) want to use LLVM to parse this YAML file, the code supports and
asserts that we're writing only.
On the other hand, I did experiment that the class hierarchy starting at
DiagnosticInfoOptimizationBase can be mapped back from YAML generated
here (see D24479).
* The YAML stream is stored in the LLVM context.
* In the example, we can probably further specify the IR value used,
i.e. print "Function" rather than "Value".
* As before hotness is computed in the analysis pass instead of
DiganosticInfo. This avoids the layering problem since BFI is in
Analysis while DiagnosticInfo is in IR.
[1] https://reviews.llvm.org/D19678#419445
Differential Revision: https://reviews.llvm.org/D24587
llvm-svn: 282539
This allows various presentation of this data using an external tool.
This was first recommended here[1].
As an example, consider this module:
1 int foo();
2 int bar();
3
4 int baz() {
5 return foo() + bar();
6 }
The inliner generates these missed-optimization remarks today (the
hotness information is pulled from PGO):
remark: /tmp/s.c:5:10: foo will not be inlined into baz (hotness: 30)
remark: /tmp/s.c:5:18: bar will not be inlined into baz (hotness: 30)
Now with -pass-remarks-output=<yaml-file>, we generate this YAML file:
--- !Missed
Pass: inline
Name: NotInlined
DebugLoc: { File: /tmp/s.c, Line: 5, Column: 10 }
Function: baz
Hotness: 30
Args:
- Callee: foo
- String: will not be inlined into
- Caller: baz
...
--- !Missed
Pass: inline
Name: NotInlined
DebugLoc: { File: /tmp/s.c, Line: 5, Column: 18 }
Function: baz
Hotness: 30
Args:
- Callee: bar
- String: will not be inlined into
- Caller: baz
...
This is a summary of the high-level decisions:
* There is a new streaming interface to emit optimization remarks.
E.g. for the inliner remark above:
ORE.emit(DiagnosticInfoOptimizationRemarkMissed(
DEBUG_TYPE, "NotInlined", &I)
<< NV("Callee", Callee) << " will not be inlined into "
<< NV("Caller", CS.getCaller()) << setIsVerbose());
NV stands for named value and allows the YAML client to process a remark
using its name (NotInlined) and the named arguments (Callee and Caller)
without parsing the text of the message.
Subsequent patches will update ORE users to use the new streaming API.
* I am using YAML I/O for writing the YAML file. YAML I/O requires you
to specify reading and writing at once but reading is highly non-trivial
for some of the more complex LLVM types. Since it's not clear that we
(ever) want to use LLVM to parse this YAML file, the code supports and
asserts that we're writing only.
On the other hand, I did experiment that the class hierarchy starting at
DiagnosticInfoOptimizationBase can be mapped back from YAML generated
here (see D24479).
* The YAML stream is stored in the LLVM context.
* In the example, we can probably further specify the IR value used,
i.e. print "Function" rather than "Value".
* As before hotness is computed in the analysis pass instead of
DiganosticInfo. This avoids the layering problem since BFI is in
Analysis while DiagnosticInfo is in IR.
[1] https://reviews.llvm.org/D19678#419445
Differential Revision: https://reviews.llvm.org/D24587
llvm-svn: 282499
Rework getLongestCommonPrefixLen() so that it doesn't access string null
terminators. The old version with std::mismatch would do this:
|
v
Strings[0] = ['a', nil]
Strings[1] = ['a', 'a', nil]
^
|
This should silence a warning from the MSVC runtime (PR30515). As
before, I tested this out by preparing a coverage report for FileCheck.
Thanks to Yaron Keren for the report!
llvm-svn: 282422
The NativeObjectOutput class has a design problem: it mixes up the caching
policy with the interface for output streams, which makes the client-side
code hard to follow and would for example make it harder to replace the
cache implementation in an arbitrary client.
This change separates the two aspects by moving the caching policy
to a separate field in Config, replacing NativeObjectOutput with a
NativeObjectStream class which only deals with streams and does not need to
be overridden by most clients and introducing an AddFile callback for adding
files (e.g. from the cache) to the link.
Differential Revision: https://reviews.llvm.org/D24622
llvm-svn: 282299
Summary:
As suggested in D24826, use different options for ThinLTO backend
parallelism from the option controlling regular LTO code gen
parallelism. They are already split in the LTO API, and this enables
controlling them with different clang options.
Reviewers: pcc, mehdi_amini
Subscribers: dexonsmith, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D24873
llvm-svn: 282290
... so that they don't show up in the index. This came up because polly
contains a .git directory and some other unmapped input in its source
dir.
llvm-svn: 282282
We used to append filenames into a vector of std::string, and then
append a reference to each string into a separate vector. This made it
easier to work with the getUniqueSourceFiles API. But it's buggy.
std::string has a small-string optimization, so you can't expect to
capture a reference to one if you're copying it into a growing vector.
Add a test that triggers this invalid reference to std::string scenario,
and kill the issue with fire by just using ArrayRef<std::string>
everywhere.
llvm-svn: 282281
We've supported restricting coverage reports to a set of files for a
long time. Add support for being able to restrict by entire directories.
I suppose this supersedes D20803.
llvm-svn: 282202
With the new LTO API in r278338, we stopped emitting the individual
index files and imports files for some modules in the distributed backend
case (thinlto-index-only plugin option).
Specifically, this is when the linker decides not to include a module in the
link, because it was in an archive library and did not have a strong
reference to it. Not creating the expected output files makes the
distributed build system implementation more difficult, in terms of
checking for the expected outputs of the thin link, and scheduling the
backend jobs. To address this, the gold-plugin will write dummy empty
.thinlto.bc and .imports files for modules not included in the link
(which LTO never sees).
Augmented a gold v1.12+ test, since that version of gold has the handling
for notifying on modules not being included in the link.
llvm-svn: 282100
These are distinct statistics which are useful to look at separately.
Example: say you have a template function "foo" with 5 instantiations
and only 3 of them are covered. Then this contributes (1/1) to the total
function coverage and (3/5) to the total instantiation coverage. I.e,
the old "Function Coverage" column has been renamed to "Instantiation
Coverage", and the new "Function Coverage" aggregates information from
the various instantiations of a function.
One benefit of making this switch is that the Line and Region coverage
columns will start making sense. Let's continue the example and assume
that the 5 instantiations of "foo" cover {2, 4, 6, 8, 10} out of 10
lines respectively. The new line coverage for "foo" is (10/10), not
(30/50). The old scenario got confusing because we'd report that there
were more lines in a file than what was actually possible.
llvm-svn: 281875
This drops some redundant calls to get{UniqueSourceFiles,
CoveredFunctions}. We can figure out the right column widths without
re-doing this expensive work.
This isn't NFC, but I don't want to check in another binary *.covmapping
file with long filenames in it. I tested this locally on a project with
some long filenames (FileCheck).
llvm-svn: 281873
The ValueSymbolTable is used to detect name conflict and rename
instructions automatically. This is not needed when the value
names are automatically discarded by the LLVMContext.
No functional change intended, just saving a little bit of memory.
This is a recommit of r281806 after fixing the accessor to return
a pointer instead of a reference and updating all the call-sites.
llvm-svn: 281813
The IPI stream is structurally identical to the TPI stream, but it
contains different record types. So we just re-use the TPI writing
code.
llvm-svn: 281638
Copying in the full text of the function doesn't help at all when we
already know that it's never executed. Just say that it's unexecuted --
the relevant source text has already been printed.
llvm-svn: 281589