Summary:
This patch turns on `-fvisibility-inlines-hidden` when building the dylib. This is important so that libc++.dylib doesn't accidentally export inline-functions which are ODR used somewhere in the dylib.
On OS X this change has no effect on the current ABI of the dylib. Unfortunately on Linux there are already ~20 inline functions which are unintentionally exported by the dylib. Almost all of these are implicitly generated destructors. I believe removing these function definitions is safe because every "linkage unit" which uses these functions has its own definition, and therefore shouldn't be dependent on libc++.dylib to provide them.
Also could a FreeBSD maintainer comment on the ABI compatibility of this patch?
Reviewers: mclow.lists, emaste, dexonsmith, joker-eph-DISABLED, jroelofs, danalbert, mehdi_amini, compnerd, dim
Subscribers: beanz, mgorny, cfe-commits, modocache
Differential Revision: https://reviews.llvm.org/D25593
llvm-svn: 285101
Summary:
`__libcpp_refstring` currently has two different definitions. First there is the complete definition in `<__refstring>` but there is also a second in `<stdexcept>`. The historical reason for this split is because both libc++ and libc++abi need to see the inline definitions of __libcpp_refstrings methods, but the `<stdexcept>` header doesn't. However this is an ODR violation and breaks the modules build.
This patch fixes the issue by creating a single class definition in `<stdexcept>` and changing `<__refstring>` to contain only the inline method definitions. This way both `libcxx/src/stdexcept.cpp` and `libcxxabi/src/stdexcept.cpp` see the same declaration in `<stdexcept>` and definitions in `<__refstring>`
Reviewers: mclow.lists, EricWF
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D25603
llvm-svn: 285100
When there's a tie between partitionings of jump tables, consider also cases
that result in no jump tables, but in one or a few cases. The motivation is
that many contemporary processors typically perform case switches fairly
quickly.
Differential revision: https://reviews.llvm.org/D25212
llvm-svn: 285099
The problem with the original commit was that some of Apple's headers depended
on an incorrect behaviour, this commit adds a temporary workaround until those
headers are fixed.
llvm-svn: 285098
When we predicate an instruction (div, rem, store) we place the instruction in
its own basic block within the vectorized loop. If a predicated instruction has
scalar operands, it's possible to recursively sink these scalar expressions
into the predicated block so that they might avoid execution. This patch sinks
as much scalar computation as possible into predicated blocks. We previously
were able to sink such operands only if they were extractelement instructions.
Differential Revision: https://reviews.llvm.org/D25632
llvm-svn: 285097
This adds a new function to DebugInfo.cpp that takes an llvm::Module
as input and removes all debug info metadata that is not directly
needed for line tables, thus effectively stripping all type and
variable information from the module.
The primary motivation for this feature was the bitcode work flow
(cf. http://lists.llvm.org/pipermail/llvm-dev/2016-June/100643.html
for more background). This is not wired up yet, but will be in
subsequent patches. For testing, the new functionality is exposed to
opt with a -strip-nonlinetable-debuginfo option.
The secondary use-case (and one that works right now!) is as a
reduction pass in bugpoint. I added two new bugpoint options
(-disable-strip-debuginfo and -disable-strip-debug-types) to control
the new features. By default it will first attempt to remove all debug
information, then only the type info, and then proceed to hack at any
remaining MDNodes.
Thanks to Adrian Prantl for stewarding this patch!
llvm-svn: 285094
The branch folding pass tail merges blocks into a common-tail. However, the
tail retains the debug information from one of the original inputs to the
merge (chosen randomly). This is a problem for sampled-based PGO, as hits
on the common-tail will be attributed to whichever block was chosen,
irrespective of which path was actually taken to the common-tail.
This patch fixes the issue by nulling the debug location for the common-tail.
Differential Revision: https://reviews.llvm.org/D25742
llvm-svn: 285093
The sanitizer-windows bot turned red with:
FAILED: utils/TableGen/CMakeFiles/obj.llvm-tblgen.dir/IntrinsicEmitter.cpp.obj
C:\PROGRA~2\MICROS~1.0\VC\bin\AMD64_~2\cl.exe ... -c
C:\...\llvm\utils\TableGen\IntrinsicEmitter.cpp
c:\...\llvm\utils\tablegen\intrinsicemitter.cpp(254) :
fatal error C1001: An internal error has occurred in the compiler.
http://lab.llvm.org:8011/builders/sanitizer-windows/builds/114/steps/build%20clang%20lld/logs/stdio
llvm-svn: 285089
When indvars widened an induction variable, the debug location for the loop
increment computation was incorrectly set equal to the debug loc of the loop
latch terminator.
This patch fixes the issue by propagating the correct location from the
original loop increment instruction to the new widened increment.
Differential Revision: https://reviews.llvm.org/D25872
llvm-svn: 285083
Now that MemorySSA keeps track of whether MemoryUses are optimized, use
getClobberingMemoryAccess() to check MemoryUse memory dependencies since
it should no longer be so expensive.
This is a follow-up change to https://reviews.llvm.org/D25881
llvm-svn: 285080
We were fairly inconsistent as to what information should be accessed
with getSectionHdr and what information (like alignment) was stored
elsewhere.
Now all section info has a dedicated getter. The code is also a bit
more compact.
llvm-svn: 285079
It is not safe to use LOAD ON CONDITION to implement access to a memory
location marked "volatile", since the architecture leaves it unspecified
whether or not an access happens if the condition is false.
The current code already appears to care about that:
def LOC : CondUnaryRSY<"loc", 0xEBF2, nonvolatile_load, GR32, 4>;
Unfortunately, that "nonvolatile_load" operator is simply ignored
by the CondUnaryRSY class, and there was no test to catch it.
llvm-svn: 285077
Disable the OpenSUSE rules for OpenSUSE versions older than 11 as they
are incompatible with the old binutils on that distribution.
Differential Revision: https://reviews.llvm.org/D24954
llvm-svn: 285076
Support using gcc-config to determine the correct GCC toolchain location
on Gentoo. In order to do that, attempt to read gcc-config configuration
form [[sysroot]]/etc/env.d/gcc, if no custom toolchain location is
provided.
Differential Revision: https://reviews.llvm.org/D25661
llvm-svn: 285074
This allows for the coalescing of the protocol declarations. When the protocols
are declared in headers, multiple definitions of the protocol would be emitted.
Marking them as common data indicates that any one can be selected.
llvm-svn: 285073
We already have (V)PMOVZX* combining support, this is the beginning of handling (V)PMOVSX* similarly - other combines in combineVSZext can be generalized in future patches.
This unearthed an interesting bug in that we were generating illegal build vectors on 32-bit targets - it was proving difficult to create a test for it from PMOVZX, but it fired immediately with PMOVSX. I've created a more general form of the existing getConstVector to handle these cases - ideally this should be handled in non-target-specific code but I couldn't find an equivalent.
Differential Revision: https://reviews.llvm.org/D25874
llvm-svn: 285072
When adding an llvm.memcpy instruction to AliasSetTracker, it uses the raw
source and target pointers which preserve bitcasts.
MemAccInst::getPointerOperand() also returns the raw target pointers, but
Scop::buildAliasGroups() did not for the source pointer. This lead to mismatches
between AliasSetTracker and ScopInfo on which pointer to use.
Fixed by also using raw pointers in Scop::buildAliasGroups().
llvm-svn: 285071
Summary:
Do *not* perform combines such as:
vector_shuffle<4,1,2,3>(build_vector(Ud, C0, C1 C2), scalar_to_vector(X))
->
build_vector(X, C0, C1, C2)
Keeping the shuffle allows lowering the constant build_vector to a materialized
constant vector (such as a vector-load from the constant-pool or some other idiom).
Reviewers: delena, igorb, spatel, mkuper, andreadb, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25524
llvm-svn: 285063
In an IR symbol table I would expect the comdats to be represented as:
- A table of strings, one for each comdat name.
- Each symbol has an optional index into that table.
The natural api for accessing that would be
InputFile:
ArrayRef<StringRef> getComdatTable() const;
Symbol:
int getComdatIndex() const;
This patch implements an API as close to that as possible. The
implementation on top of the current IRObjectFile is a bit hackish,
but should map just fine over a symbol table and is very convenient to
use.
llvm-svn: 285061
Warnings generated by -Wdocumentation-unknown-command did only have a
start location, not a full source range. This resulted in only the
"carret" being show in messages, and IDEs highlighting only the single
initial character.
llvm-svn: 285056
Committed after LGTM and check-all
Vector-reduction arithmetic accepts vectors as inputs and produces scalars as outputs.
This class of vector operation forms the basis of many scientific computations.
In vector-reduction arithmetic, the evaluation off is independent of the order of the input elements of V.
Used bisection method. At each step, we partition the vector with previous
step in half, and the operation is performed on its two halves.
This takes log2(n) steps where n is the number of elements in the vector.
Reviwer: 1. igorb
2. craig.topper
Differential Revision: https://reviews.llvm.org/D25527
llvm-svn: 285054
Summary: The one tricky thing about this is that the sign/zero_extend_inreg uses v64i8 as an input type which isn't legal without BWI support. Though the vpmovsxbq and vpmovzxbq instructions themselves don't require BWI. To support this we need to add custom lowering for ZERO_EXTEND_VECTOR_INREG with v64i8 input. This can mostly reuse the existing sign extend code with a couple checks for sign extend vs zero extend added.
Reviewers: delena, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25594
llvm-svn: 285053
This is a function to go backwards in a block to find the first
instruction in a bundle, so iterator is a more natural choice for
parameter/return rather than a reference to a MachineInstruction.
llvm-svn: 285051