The switch coveres all possible values. If a new one is added in the
future the compiler will start warning, providing a notification that
the switch needs updating.
llvm-svn: 282111
This change introduces optional marking of the column within a source
line where a thread is stopped. This marking will show up when the
source code for a thread stop is displayed, when the debug info
knows the column information, and if the optional column marking is
enabled.
There are two separate methods for handling the marking of the stop
column:
* via ANSI terminal codes, which are added inline to the source line
display. The default ANSI mark-up is to underline the column.
* via a pure text-based caret that is added in the appropriate column
in a newly-inserted blank line underneath the source line in
question.
There are some new options that control how this all works.
* settings set stop-show-column
This takes one of 4 values:
* ansi-or-caret: use the ANSI terminal code mechanism if LLDB
is running with color enabled; if not, use the caret-based,
pure text method (see the "caret" mode below).
* ansi: only use the ANSI terminal code mechanism to highlight
the stop line. If LLDB is running with color disabled, no
stop column marking will occur.
* caret: only use the pure text caret method, which introduces
a newly-inserted line underneath the current line, where
the only character in the new line is a caret that highlights
the stop column in question.
* none: no stop column marking will be attempted.
* settings set stop-show-column-ansi-prefix
This is a text format that indicates the ANSI formatting
code to insert into the stream immediately preceding the
column where the stop column character will be marked up.
It defaults to ${ansi.underline}; however, it can contain
any valid LLDB format codes, e.g.
${ansi.fg.red}${ansi.bold}${ansi.underline}
* settings set stop-show-column-ansi-suffix
This is the text format that specifies the ANSI terminal
codes to end the markup that was started with the prefix
described above. It defaults to: ${ansi.normal}. This
should be sufficient for the common cases.
Significant leg-work was done by Adrian Prantl. (Thanks, Adrian!)
differential review: https://reviews.llvm.org/D20835
reviewers: clayborg, jingham
llvm-svn: 282105
Thanks to Zachary Turner for the suggestion. It's distasteful that the actual
type of the lambda can't be spelled out, but it should be evident from the
definition of the lambda body.
llvm-svn: 281536
Summary:
It fixes the following compile warnings:
1. '0' flag ignored with precision and ‘%d’ gnu_printf format
2. enumeral and non-enumeral type in conditional expression
3. format ‘%d’ expects argument of type ‘int’, but argument 4 has type ...
4. enumeration value ‘...’ not handled in switch
5. cast from type ‘const uint64_t* {aka ...}’ to type ‘int64_t* {aka ...}’ casts away qualifiers
6. extra ‘;’
7. comparison between signed and unsigned integer expressions
8. variable ‘register_operand’ set but not used
9. control reaches end of non-void function
Reviewers: jingham, emaste, zturner, clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D24331
llvm-svn: 281191
mode in lldb works. I've been discussing this with Jim Ingham,
Greg Clayton, and Kate Stone for the past week or two.
Previously lldb would print three source lines (centered on the
line table entry line for the current line) followed by the assembly.
It would print the context information (module`function + offset)
before those three lines of source.
Now lldb will print up to two lines before/after the line table
entry. It prints two '*' characters for the line table line to
make it clear what line is showing assembly. There is one line of
whitespace before/after the source lines so the separation between
source & assembly is clearer. I don't print the context line
(module`function + offset). I stop printing context lines if it's
a different line table entry, or if it's a source line I've already
printed as context to another source line. If I have two line table
entries one after another for the same source line (I get these often
with clang - with different column information in them), I only print
the source line once.
I'm also using the target.process.thread.step-avoid-regexp setting
(which keeps you from stepping into STL functions that have been inlined
into your own code) and avoid printing any source lines from functions
that match that regexp.
When lldb disassembles into a new function, it will try to find the
declaration line # for the function and print all of the source lines
between the decl and the first line table entry (usually a { curly brace)
so we have a good chance of including the arguments, at least with the
debug info emitted by clang.
Finally, the # of source lines of context to show has been separated
from whether we're doing mixed source & assembly or not. Previously
specifying 0 lines of context would turn off mixed source & assembly.
I think there's room for improvement, and maybe some bugs I haven't
found yet, but it's in good enough shape to upstream and iterate at
this point.
I'm not sure how best to indicate which source line is the actual line
table # versus context lines. I'm using '**' right now. Both Kate
and Greg had the initial idea to reuse '->' (normally used to indicate
"currently executing source line") - I tried it but I wasn't thrilled,
I'm too used to the established meaning of ->.
Greg had the interesting idea of avoiding context source lines only
in two line table entries in the same source file. So we'd print
two lines before & after a source line, and then the next line table
entry (if it was on the next source line after those two context lines)
we'd display only the following two lines -- the previous two had just
been printed. If an inline source line was printed between these two,
though, we'd print the context lines for both of them. It's an
interesting idea, and I want to see how it works with both -O0 and -O3
codegen where we have different amounts of inlining.
<rdar://problem/27961419>
llvm-svn: 280906
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
The commit introduced an array of const objects, which libstdc++ does not like. Make the object
non-const.
Also fix a compiler warning while I'm in there.
llvm-svn: 280697
When a process stops due to a crash, we get the crashing instruction and the
crashing memory location (if there is one). From the user's perspective it is
often unclear what the reason for the crash is in a symbolic sense.
To address this, I have added new fuctionality to StackFrame to parse the
disassembly and reconstruct the sequence of dereferneces and offsets that were
applied to a known variable (or fuction retrn value) to obtain the invalid
pointer.
This makes use of enhancements in the disassembler, as well as new information
provided by the DWARF expression infrastructure, and is exposed through a
"frame diagnose" command. It is also used to provide symbolic information, when
available, in the event of a crash.
The algorithm is very rudimentary, and it needs a bunch of work, including
- better parsing for assembly, preferably with help from LLVM
- support for non-Apple platforms
- cleanup of the algorithm core, preferably to make it all work in terms of
Operands instead of register/offset pairs
- improvement of the GetExpressioPath() logic to make prettier expression
paths, and
- better handling of vtables.
I welcome all suggestios, improvements, and testcases.
llvm-svn: 280692
Summary:
The "file" variable in a LineEntry was mapped using target.source-map, except when stepping through inlined code. This patch adds a new variable to LineEntry, "original_file", that contains the original file from the debug info. "file" will continue to (possibly) be mapped.
Some code has been changed to use "original_file". This is code dealing with symbols. Code dealing with source files will still use "file". Reviewers, please confirm that these particular changes are correct.
Tests run on Ubuntu 12.04 show no regression.
Reviewers: clayborg, jingham
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D20135
llvm-svn: 269250
statements for, be sure not to include variables that have no locations. We wouldn't
be able to realize them, and that will cause all expressions to fail.
llvm-svn: 267500
Additionally fix the type of some dwarf expression where we had a
confusion between scalar and load address types after a dereference.
Differential revision: http://reviews.llvm.org/D17604
llvm-svn: 262014
DWARF stores this information in the DW_AT_start_scope attribute. This
CL add support for this attribute and also changes the functions
displaying frame variables to only display the variables currently in
scope.
Differential revision: http://reviews.llvm.org/D17449
llvm-svn: 261858
the xcode project file to catch switch statements that have a
case that falls through unintentionally.
Define LLVM_FALLTHROUGH to indicate instances where a case has code
and intends to fall through. This should be in llvm/Support/Compiler.h;
Peter Collingbourne originally checked in there (r237766), then
reverted (r237941) because he didn't have time to mark up all the
'case' statements that were intended to fall through. I put together
a patch to get this back in llvm http://reviews.llvm.org/D17063 but
it hasn't been approved in the past week. I added a new
lldb-private-defines.h to hold the definition for now.
Every place in lldb where there is a comment that the fall-through
is intentional, I added LLVM_FALLTHROUGH to silence the warning.
I haven't tried to identify whether the fallthrough is a bug or
not in the other places.
I haven't tried to add this to the cmake option build flags.
This warning will only work for clang.
This build cleanly (with some new warnings) on macosx with clang
under xcodebuild, but if this causes problems for people on other
configurations, I'll back it out.
llvm-svn: 260930
It is required because of the following edge case on arm:
bx <addr> Non-tail call in a no return function
[data-pool] Marked with $d mapping symbol
The return address of the function call will point to the data pool but
we have to treat it as code so the StackFrame can calculate the symbols
correctly.
Differential revision: http://reviews.llvm.org/D12556
llvm-svn: 246958
* Use the frame's context (instead of just the target's) when evaluating,
so that the language of the frame's CU can be used to select the
compiler and/or compiler options to use when parsing the expression.
This allows for modules built with mixed languages to be parsed in
the context of their frame.
* Add all C and C++ language variants when determining the language options
to set.
* Enable C++ language options when language is C or ObjC as a workaround since
the expression parser uses features of C++ to capture values.
* Enable ObjC language options when language is C++ as a workaround for ObjC
requirements.
* Disable C++11 language options when language is C++03.
* Add test TestMixedLanguages.py to check that the language being used
for evaluation is that of the frame.
* Fix test TestExprOptions.py to check for C++11 instead of C++ since C++ has
to be enabled for C, and remove redundant expr --language test for ObjC.
* Fix TestPersistentPtrUpdate.py to not require C++11 in C.
Reviewed by: clayborg, spyffe, jingham
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D11102
llvm-svn: 246829
Create a new "lldb_private::CompilerDeclContext" class that will replace all direct uses of "clang::DeclContext" when used in compiler agnostic code, yet still allow for conversion to clang::DeclContext subclasses by clang specific code. This completes the abstraction of type parsing by removing all "clang::" references from the SymbolFileDWARF. The new "lldb_private::CompilerDeclContext" class abstracts decl contexts found in compiler type systems so they can be used in internal API calls. The TypeSystem is required to support CompilerDeclContexts with new pure virtual functions that start with "DeclContext" in the member function names. Converted all code that used lldb_private::ClangNamespaceDecl over to use the new CompilerDeclContext class and removed the ClangNamespaceDecl.cpp and ClangNamespaceDecl.h files.
Removed direct use of clang APIs from SBType and now use the abstract type systems to correctly explore types.
Bulk renames for things that used to return a ClangASTType which is now CompilerType:
"Type::GetClangFullType()" to "Type::GetFullCompilerType()"
"Type::GetClangLayoutType()" to "Type::GetLayoutCompilerType()"
"Type::GetClangForwardType()" to "Type::GetForwardCompilerType()"
"Value::GetClangType()" to "Value::GetCompilerType()"
"Value::SetClangType (const CompilerType &)" to "Value::SetCompilerType (const CompilerType &)"
"ValueObject::GetClangType ()" to "ValueObject::GetCompilerType()"
many more renames that are similar.
llvm-svn: 245905
Since interaction with the python interpreter is moving towards
being more isolated, we won't be able to include this header from
normal files anymore, all includes of it should be localized to
the python library which will live under source/bindings/API/Python
after a future patch.
None of the files that were including this header actually depended
on it anyway, so it was just a dead include in every single instance.
llvm-svn: 238581
Summary:
The code for GetSyntheticArrayMemberFromPointer and
GetSyntheticArrayMemberFromArray was identical, so just collapse the
the methods into one.
Reviewers: granata.enrico, clayborg
Reviewed By: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D7911
llvm-svn: 230708
changing it was in r219544 - after living on that for a few
months, I wanted to take another crack at this.
The disassembly-format setting still exists and the old format
can be user specified with a setting like
${current-pc-arrow}${addr-file-or-load}{ <${function.name-without-args}${function.concrete-only-addr-offset-no-padding}>}:
This patch was discussed in http://reviews.llvm.org/D7578
<rdar://problem/19726421>
llvm-svn: 229186
Why? Debugger::FormatPrompt() would run through the format prompt every time and parse it and emit it piece by piece. It also did formatting differently depending on which key/value pair it was parsing.
The new code improves on this with the following features:
1 - Allow format strings to be parsed into a FormatEntity::Entry which can contain multiple child FormatEntity::Entry objects. This FormatEntity::Entry is a parsed version of what was previously always done in Debugger::FormatPrompt() so it is more efficient to emit formatted strings using the new parsed FormatEntity::Entry.
2 - Allows errors in format strings to be shown immediately when setting the settings (frame-format, thread-format, disassembly-format
3 - Allows auto completion by implementing a new OptionValueFormatEntity and switching frame-format, thread-format, and disassembly-format settings over to using it.
4 - The FormatEntity::Entry for each of the frame-format, thread-format, disassembly-format settings only replaces the old one if the format parses correctly
5 - Combines all consecutive string values together for efficient output. This means all "${ansi.*}" keys and all desensitized characters like "\n" "\t" "\0721" "\x23" will get combined with their previous strings
6 - ${*.script:} (like "${var.script:mymodule.my_var_function}") have all been switched over to use ${script.*:} "${script.var:mymodule.my_var_function}") to make the format easier to parse as I don't believe anyone was using these format string power user features.
7 - All key values pairs are defined in simple C arrays of entries so it is much easier to add new entries.
These changes pave the way for subsequent modifications where we can modify formats to do more (like control the width of value strings can do more and add more functionality more easily like string formatting to control the width, printf formats and more).
llvm-svn: 228207
If a noreturn function was the last function in a section,
we wouldn't correctly back up the saved-pc value into the
correct section leading to us showing the wrong function in
the backtrace.
Also add a backtrace test with an attempt to elicit this
particular layout. It happens to work out with clang -Os
but other compilers may not quite get the same layout I'm
getting at that opt setting. We'll still be exercising the
basic noreturn handling in the unwinder even if we don't get
one function at the very end of a section.
<rdar://problem/16051613>
llvm-svn: 221575
output style can be customized. Change the built-in default to be
more similar to gdb's disassembly formatting.
The disassembly-format for a gdb-like output is
${addr-file-or-load} <${function.name-without-args}${function.concrete-only-addr-offset-no-padding}>:
The disassembly-format for the lldb style output is
{${function.initial-function}{${module.file.basename}`}{${function.name-without-args}}:\n}{${function.changed}\n{${module.file.basename}`}{${function.name-without-args}}:\n}{${current-pc-arrow} }{${addr-file-or-load}}:
The two backticks in the lldb style formatter triggers the sub-expression evaluation in
CommandInterpreter::PreprocessCommand() so you can't use that one as-is ... changing to
use ' characters instead of ` would work around that.
<rdar://problem/9885398>
llvm-svn: 219544
updating its ivars. We've had a lot of crash reports and careful
analysis shows that we've got multiple threads operating on the
same StackFrame objects, changing their m_sc and m_flags ivars.
<rdar://problem/18406111>
llvm-svn: 218845
This is a mechanical change addressing the various sign comparison warnings that
are identified by both clang and gcc. This helps cleanup some of the warning
spew that occurs during builds.
llvm-svn: 205390
at some point in the past. We may have nothing more than a pc value
for this type of stack frame -- hopefully we'll have a pc and a
stop_id so we can track module loads and unloads over time and
symbolicate the pc at the correct point in time.
Also add a flag to indicate if the CFA for the frame is available
(a bit different from a CFA of LLDB_INVALID_ADDRESS) and also an
overall setting to indicate whether this is a history stack frame
or not. A history stack frame may not have a CFA, it may not have
a register context, it may not have variables, it may not have a
frame pointer or a stack pointer.
<rdar://problem/15314068>
llvm-svn: 193987
pure virtual base class and made StackFrame a subclass of that. As
I started to build on top of that arrangement today, I found that it
wasn't working out like I intended. Instead I'll try sticking with
the single StackFrame class -- there's too much code duplication to
make a more complicated class hierarchy sensible I think.
llvm-svn: 193983
defines a protocol that all subclasses will implement. StackFrame
is currently the only subclass and the methods that Frame vends are
nearly identical to StackFrame's old methods.
Update all callers to use Frame*/Frame& instead of pointers to
StackFrames.
This is almost entirely a mechanical change that touches a lot of
the code base so I'm committing it alone. No new functionality is
added with this patch, no new subclasses of Frame exist yet.
I'll probably need to tweak some of the separation, possibly moving
some of StackFrame's methods up in to Frame, but this is a good
starting point.
<rdar://problem/15314068>
llvm-svn: 193907
A long time ago we start with clang types that were created by the symbol files and there were many functions in lldb_private::ClangASTContext that helped. Later we create ClangASTType which contains a clang::ASTContext and an opauque QualType, but we didn't switch over to fully using it. There were a lot of places where we would pass around a raw clang_type_t and also pass along a clang::ASTContext separately. This left room for error.
This checkin change all type code over to use ClangASTType everywhere and I cleaned up the interfaces quite a bit. Any code that was in ClangASTContext that was type related, was moved over into ClangASTType. All code that used these types was switched over to use all of the new goodness.
llvm-svn: 186130
settings set use-color [false|true]
settings set prompt "${ansi.bold}${ansi.fg.green}(lldb)${ansi.normal} "
also "--no-use-colors" on the command prompt
llvm-svn: 182609
print the disassembly context around $pc -- just print the filename and line number, even if we
can't show the source code. Previously if the source file was not available, lldb would print
the source filename & line number and assembly.
<rdar://problem/13072951>
llvm-svn: 180706
Calculate "can branch" using the MC API's rather than our hand-rolled regex'es.
As extra credit, allow setting the disassembly flavor for x86 based architectures to intel or att.
<rdar://problem/11319574>
<rdar://problem/9329275>
llvm-svn: 176392