This reverts commit r366686 as it appears to be causing buildbot
failures on sanitizer-x86_64-linux-android and sanitizer-x86_64-linux.
llvm-svn: 366708
This patch was not the reason of the buildbot failure.
Deleted code was introduced as a work around for a bug in the gold linker
(http://sourceware.org/PR16794). Test case that was given as a reason for
this part of code, the one on previous link, now works for the gold.
This condition is too strict and when a code is compiled with debug info
it forces generation of numerous relocations with symbol for architectures
that do not have relocation addend.
Reviewers: arsenm, espindola
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D64327
llvm-svn: 366686
Deleted code was introduced as a work around for a bug in the gold linker
(http://sourceware.org/PR16794). Test case that was given as a reason for
this part of code, the one on previous link, now works for the gold.
This condition is too strict and when a code is compiled with debug info
it forces generation of numerous relocations with symbol for architectures
that do not have relocation addend.
Reviewers: arsenm, espindola
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D64327
llvm-svn: 365618
This causes errors like:
ld: error: blah.o: requires dynamic R_X86_64_PC32 reloc against '' which
may overflow at runtime; recompile with -fPIC
blah.cc:function f(): error: undefined reference to ''
blah.o:g(): error: undefined reference to ''
I have not yet come up with an appropriate reproduction.
llvm-svn: 240394
Now that pr23900 is fixed, we can bring it back with no changes.
Original message:
Make all temporary symbols unnamed.
What this does is make all symbols that would otherwise start with a .L
(or L on MachO) unnamed.
Some of these symbols still show up in the symbol table, but we can just
make them unnamed.
In order to make sure we produce identical results when going thought assembly,
all .L (not just the compiler produced ones), are now unnamed.
Running llc on llvm-as.opt.bc, the peak memory usage goes from 208.24MB to
205.57MB.
llvm-svn: 240302
What this does is make all symbols that would otherwise start with a .L
(or L on MachO) unnamed.
Some of these symbols still show up in the symbol table, but we can just
make them unnamed.
In order to make sure we produce identical results when going thought assembly,
all .L (not just the compiler produced ones), are now unnamed.
Running llc on llvm-as.opt.bc, the peak memory usage goes from 208.24MB to
205.57MB.
llvm-svn: 240130
The ELF spec is very clear:
-----------------------------------------------------------------------------
If the value is non-zero, it represents a string table index that gives the
symbol name. Otherwise, the symbol table entry has no name.
--------------------------------------------------------------------------
In particular, a st_name of 0 most certainly doesn't mean that the symbol has
the same name as the section.
llvm-svn: 238899
Many of these predate llvm-readobj. With elf-dump we had to match
a relocation to symbol number and symbol number to symbol name or
section number.
llvm-svn: 235015
The main differences are:
* Split in 32 and 64 bit functions.
* First switch on the Modifier so that we have only one non fully covered
switch.
* Map the fixup kind first to a x86_64 (or i386) specific enum, to make
it easy to handle cases like X86::reloc_riprel_4byte_movq_load.
* Switch on IsPCRel last, which reduces code duplication.
Fixes pr22308.
llvm-svn: 232837
The fix itself is fairly simple: move getAccessVariant to MCValue so that we
replace the old weak expression evaluation with the far more general
EvaluateAsRelocatable.
This then requires that EvaluateAsRelocatable stop when it finds a non
trivial reference kind. And that in turn requires the ELF writer to look
harder for weak references.
Last but not least, this found a case where we were being bug by bug
compatible with gas and accepting an invalid input. I reported pr19647
to track it.
llvm-svn: 207920
I started trying to fix a small issue, but this code has seen a small fix too
many.
The old code was fairly convoluted. Some of the issues it had:
* It failed to check if a symbol difference was in the some section when
converting a relocation to pcrel.
* It failed to check if the relocation was already pcrel.
* The pcrel value computation was wrong in some cases (relocation-pc.s)
* It was missing quiet a few cases where it should not convert symbol
relocations to section relocations, leaving the backends to patch it up.
* It would not propagate the fact that it had changed a relocation to pcrel,
requiring a quiet nasty work around in ARM.
* It was missing comments.
llvm-svn: 205076
For COFF and MachO, sections semantically have relocations that apply to them.
That is not the case on ELF.
In relocatable objects (.o), a section with relocations in ELF has offsets to
another section where the relocations should be applied.
In dynamic objects and executables, relocations don't have an offset, they have
a virtual address. The section sh_info may or may not point to another section,
but that is not actually used for resolving the relocations.
This patch exposes that in the ObjectFile API. It has the following advantages:
* Most (all?) clients can handle this more efficiently. They will normally walk
all relocations, so doing an effort to iterate in a particular order doesn't
save time.
* llvm-readobj now prints relocations in the same way the native readelf does.
* probably most important, relocations that don't point to any section are now
visible. This is the case of relocations in the rela.dyn section. See the
updated relocation-executable.test for example.
llvm-svn: 182908
The failures in r116753 r116756 were caused by a python issue -
Python likes to append 'L' suffix to stringified numbers if the number
is larger than a machine int. Unfortunately, this causes a divergence of
behavior between 32 and 64 bit python versions.
I re-crafted elf-dump/common_dump to take care of these issues by:
1. always printing 0x (makes for easy sed/regex)
2. always print fixed length (exactly 2 + numBits/4 digits long)
by mod ((2^numBits) - 1)
3. left-padded with '0'
There is a residual common routine that is also used by
macho-dump (dataToHex) , so I left the 'section_data' test values alone.
llvm-svn: 116823