-Wtautological-overlap-compare and self-comparison from -Wtautological-compare
relay on detecting the same operand in different locations. Previously, each
warning had it's own operand checker. Now, both are merged together into
one function that each can call. The function also now looks through member
access and array accesses.
Differential Revision: https://reviews.llvm.org/D66045
llvm-svn: 372453
RegionStore now knows how to bind a nonloc::CompoundVal that represents the
value of an aggregate initializer when it has its initial segment of sub-values
correspond to base classes.
Additionally, fixes the crash from pr40022.
Differential Revision: https://reviews.llvm.org/D59054
llvm-svn: 356222
This syntactic checker looks for expressions on both sides of comparison
operators that are structurally the same. As a special case, the
floating-point idiom "x != x" for "isnan(x)" is left alone.
Currently this only checks comparison operators, but in the future we could
extend this to include logical operators or chained if-conditionals.
Checker by Per Viberg!
llvm-svn: 194236
Summary:
RegionStoreManager had an optimization which replaces references to empty
structs with UnknownVal. Unfortunately, this check didn't take into account
possible field members in base classes.
To address this, I changed this test to "is empty and has no base classes". I
don't consider it worth the trouble to go through base classes and check if all
of them are empty.
Reviewers: jordan_rose
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1547
llvm-svn: 189590
This actually looks through several kinds of expression, such as
OpaqueValueExpr and ExprWithCleanups. The idea is that binding and lookup
should be consistent, and so if the environment needs to be modified later,
the code doing the modification will not have to manually look through these
"transparent" expressions to find the real binding to change.
This is necessary for proper updating of struct rvalues as described in
the previous commit.
llvm-svn: 166121
In C++, rvalues that need to have their address taken (for example, to be
passed to a function by const reference) will be wrapped in a
MaterializeTemporaryExpr, which lets CodeGen know to create a temporary
region to store this value. However, MaterializeTemporaryExprs are /not/
created when a method is called on an rvalue struct, even though the 'this'
pointer needs a valid value. CodeGen works around this by creating a
temporary region anyway; now, so does the analyzer.
The analyzer also does this when accessing a field of a struct rvalue.
This is a little unfortunate, since the rest of the struct will soon be
thrown away, but it does make things consistent with the rest of the
analyzer.
This allows us to bring back the assumption that all known 'this' values
are Locs. This is a revised version of r164828-9, reverted in r164876-7.
<rdar://problem/12137950>
llvm-svn: 166120
This is related to but not blocked by <rdar://problem/12137950>
("Return-by-value structs do not have associated regions")
This reverts r164875 / 3278d41e17749dbedb204a81ef373499f10251d7.
llvm-svn: 164952
Previously the analyzer treated all inlined constructors like lvalues,
setting the value of the CXXConstructExpr to the newly-constructed
region. However, some CXXConstructExprs behave like rvalues -- in
particular, the implicit copy constructor into a pass-by-value argument.
In this case, we want only the /contents/ of a temporary object to be
passed, so that we can use the same "copy each argument into the
parameter region" algorithm that we use for scalar arguments.
This may change when we start modeling destructors of temporaries,
but for now this is the last part of <rdar://problem/12137950>.
llvm-svn: 164830
An rvalue has no address, but calling a C++ member function requires a
'this' pointer. This commit makes the analyzer create a temporary region
in which to store the struct rvalue and use as a 'this' pointer whenever
a member function is called on an rvalue, which is essentially what
CodeGen does.
More of <rdar://problem/12137950>. The last part is tracking down the
C++ FIXME in array-struct-region.cpp.
llvm-svn: 164829
The problem is that the value of 'this' in a C++ member function call
should always be a region (or NULL). However, if the object is an rvalue,
it has no associated region (only a conjured symbol or LazyCompoundVal).
For now, we handle this in two ways:
1) Actually respect MaterializeTemporaryExpr. Before, it was relying on
CXXConstructExpr to create temporary regions for all struct values.
Now it just does the right thing: if the value is not in a temporary
region, create one.
2) Have CallEvent recognize the case where its 'this' pointer is a
non-region, and just return UnknownVal to keep from confusing clients.
The long-term problem is being tracked internally in <rdar://problem/12137950>,
but this makes many test cases pass.
llvm-svn: 163220
This turned out to have many implications, but what eventually seemed to
make it unworkable was the fact that we can get struct values (as
LazyCompoundVals) from other places besides return-by-value function calls;
that is, we weren't actually able to "treat all struct values as regions"
consistently across the entire analyzer core.
Hopefully we'll be able to come up with an alternate solution soon.
This reverts r163066 / 02df4f0aef142f00d4637cd851e54da2a123ca8e.
llvm-svn: 163218
This allows us to correctly symbolicate the fields of structs returned by
value, as well as get the proper 'this' value for when methods are called
on structs returned by value.
This does require a moderately ugly hack in the StoreManager: if we assign
a "struct value" to a struct region, that now appears as a Loc value being
bound to a region of struct type. We handle this by simply "dereferencing"
the struct value region, which should create a LazyCompoundVal.
This should fix recent crashes analyzing LLVM and on our internal buildbot.
<rdar://problem/12137950>
llvm-svn: 163066