Add lldb support for a Mach-O "load binary" LC_NOTE which provides
a UUID, load address/slide, and possibly a name of a binary that
should be loaded when examining the core.
struct load_binary
{
uint32_t version; // currently 1
uuid_t uuid; // all zeroes if uuid not specified
uint64_t load_address; // virtual address where the macho is loaded, UINT64_MAX if unavail
uint64_t slide; // slide to be applied to file address to get load address, 0 if unavail
char name_cstring[]; // must be nul-byte terminated c-string, '\0' alone if name unavail
} __attribute__((packed));
Differential Revision: https://reviews.llvm.org/D115494
rdar://85069250
StructuredDataImpl ownership semantics is unclear at best. Various
structures were holding a non-owning pointer to it, with a comment that
the object is owned somewhere else. From what I was able to gather that
"somewhere else" was the SBStructuredData object, but I am not sure that
all created object eventually made its way there. (It wouldn't matter
even if they did, as we are leaking most of our SBStructuredData
objects.)
Since StructuredDataImpl is just a collection of two (shared) pointers,
there's really no point in elaborate lifetime management, so this patch
replaces all StructuredDataImpl pointers with actual objects or
unique_ptrs to it. This makes it much easier to resolve SBStructuredData
leaks in a follow-up patch.
Differential Revision: https://reviews.llvm.org/D114791
This commit should fix a heap-use-after-free bug that was caught by the
sanitizer bot.
The issue is that we were reading memory from a second target into a
`SBData` object in Python, that was passed to lldb's internal
`ScriptedProcess::DoReadMemory` C++ method.
The ScriptedPythonInterface then extracts the underlying `DataExtractor`
from the `SBData` object, and is used to read the memory with the
appropriate address size and byte order.
Unfortunately, it seems that even though the DataExtractor object was
still valid, it pointed to invalid, possibly garbage-collected memory
from Python.
To mitigate this, the patch uses `SBData::SetDataWithOwnership` to copy
the pointed buffer to lldb's heap memory which prevents the
use-after-free error.
rdar://84511405
Differential Revision: https://reviews.llvm.org/D115654
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch introduces a new method to SBData: SetDataWithOwnership.
Instead of referencing the pointer to the data, this method copies the
data buffer into lldb's heap memory.
This can prevent having the underlying DataExtractor object point to
freed/garbage-collected memory.
Differential Revision: https://reviews.llvm.org/D115652
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Just defensive CMake-ing. I pulled this from D115544 and D99484 which
are blocked on some lldb CI failures I don't yet understand. Hoping to land
something smaller in the meantime.
Reviewed By: #libc, ldionne
Differential Revision: https://reviews.llvm.org/D115566
This reverts commit 492de35df4.
I tried to apply John's changes in 8d897ec915 that were expected to
fix his patch but that didn't work unfortunately.
Reverting this again to fix the macOS bots and leave him more time to
investigate the issue.
This reverts commit 797b50d4be.
See the original D99484. @mib who noticed the original problem could not longer
reproduce it, after I tried and also failed. We are threfore hoping it went
away on its own!
Reviewed By: mib
Differential Revision: https://reviews.llvm.org/D115544
The change to ArchSpec::SetArchitecture that was setting the
ObjectFile of a mach-o binary to llvm::Triple::MachO. It's not
necessary for my patch, and it changes the output of image list -t
causing TestUniversal.py to fail on x86_64 systems. The bots
turned up the failure, I was developing and testing this on
an Apple Silicon mac.
With arm64e ARMv8.3 pointer authentication, lldb needs to know how
many bits are used for addressing and how many are used for pointer
auth signing. This should be determined dynamically from the inferior
system / corefile, but there are some workflows where it still isn't
recorded and we fall back on a default value that is correct on some
Darwin environments.
This patch also explicitly sets the vendor of mach-o binaries to
Apple, so we select an Apple ABI instead of a random other ABI.
It adds a function pointer formatter for systems where pointer
authentication is in use, and we can strip the ptrauth bits off
of the function pointer address and get a different value that
points to an actual symbol.
Differential Revision: https://reviews.llvm.org/D115431
rdar://84644661
This is a post-review update for D115313, to rephrase source display
warning messages for artificial locations, making them more
understandable for the end-user.
Differential Revision: https://reviews.llvm.org/D115461
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
It can happen that a line entry reports that some source code is located
at line 0. In DWARF, line 0 is a special location which indicates that
code has no 1-1 mapping with source.
When stopping in one of those artificial locations, lldb doesn't know which
line to display and shows the beginning of the file instead.
This patch mitigates this behaviour by checking if the current symbol context
of the line entry has a matching function, in which case, it slides the
source listing to the start of that function.
This patch also shows the user a warning explaining why lldb couldn't
show sources at that location.
rdar://83118425
Differential Revision: https://reviews.llvm.org/D115313
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Because of its dependency on clang (and potentially other compilers
downstream, such as swift) lldb_private::GetVersion already lives in its
own library called lldbBase. Despite that, its implementation was spread
across unrelated files. This patch improves things by introducing a
Version library with its own directory, header and implementation file.
The benefits of this patch include:
- We can get rid of the ugly quoting macros.
- Other parts of LLDB can read the version number from
lldb/Version/Version.inc.
- The implementation can be swapped out for tools like lldb-server than
don't need to depend on clang at all.
Differential revision: https://reviews.llvm.org/D115211
This can be unsigned long or unsigned long long depending on where it's
compiled. Use the ugly portable way.
PlatformWindows.cpp:397:63: warning: format specifies type 'unsigned long long' but the argument has type 'uint64_t' (aka 'unsigned long')
The test for this functionality was failing on the darwin bot, because
the entries came out in opposite order. While this does not impact
functionality, and the algorithm that produces it is technically
deterministic (the nondeterminism comes from the contents of the host
environment), it seems like it would be more user-friendly if the
entries came out in a more predictible order.
Therefore I am adding the sort call to the actual code instead of
relaxing test expectations.
Test is using "next" commands to make progress in the process. D115137
added an additional statement to the program, without adding a command
to step over it. This only seemed to matter for the libc++ flavour of
the test, possibly because libstdc++ list is "empty" in its
uninitialized state.
Since moving with step commands is a treacherous, this patch adds a
run-to-breakpoint command to the test. It only does this for the
affected step, but one may consider doing it elsewhere too.
Qemu normally forwards its (host) environment variables to the emulated
process. While this works fine for most variables, there are some (few, but
fairly important) variables where this is not possible. LD_LIBRARY_PATH
is the probably the most important of those -- we don't want the library
search path for the emulated libraries to interfere with the libraries
that the emulator itself needs.
For this reason, qemu provides a mechanism (QEMU_SET_ENV,
QEMU_UNSET_ENV) to set variables only for the emulated process. This
patch makes use of that functionality to pass any user-provided
variables to the emulated process. Since we're piggy-backing on the
normal lldb environment-handling mechanism, all the usual mechanism to
provide environment (target.env-vars setting, SBLaunchInfo, etc.) work
out-of-the-box, and the only thing we need to do is to properly
construct the qemu environment variables.
This patch also adds a new setting -- target-env-vars, which represents
environment variables which are added (on top of the host environment)
to the default launch environments of all (qemu) targets. The reason for
its existence is to enable the configuration (e.g., from a startup
script) of the default launch environment, before any target is created.
The idea is that this would contain the variables (like the
aforementioned LD_LIBRARY_PATH) common to all targets being debugged on
the given system. The user is, of course, free to customize the
environment for a particular target in the usual manner.
The reason I do not want to use/recommend the "global" version of the
target.env-vars setting for this purpose is that the setting would apply
to all targets, whereas the settings (their values) I have mentioned
would be specific to the given platform.
Differential Revision: https://reviews.llvm.org/D115246
Also add tests to check that we print the warning in the right
circumstances.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D114877
This is a split of D113724. Calling `TypeSystemClang::AddMethodToCXXRecordType`
to create function decls for class methods.
Differential Revision: https://reviews.llvm.org/D113930
DataEncoder was previously made to modify data within an existing buffer. As the code progressed, new clients started using DataEncoder to create binary data. In these cases the use of this class was possibly, but only if you knew exactly how large your buffer would be ahead of time. This patchs adds the ability for DataEncoder to own a buffer that can be dynamically resized as data is appended to the buffer.
Change in this patch:
- Allow a DataEncoder object to be created that owns a DataBufferHeap object that can dynamically grow as data is appended
- Add new methods that start with "Append" to append data to the buffer and grow it as needed
- Adds full testing of the API to assure modifications don't regress any functionality
- Has two constructors: one that uses caller owned data and one that creates an object with object owned data
- "Append" methods only work if the object owns it own data
- Removes the ability to specify a shared memory buffer as no one was using this functionality. This allows us to switch to a case where the object owns its own data in a DataBufferHeap that can be resized as data is added
"Put" methods work on both caller and object owned data.
"Append" methods work on only object owned data where we can grow the buffer. These methods will return false if called on a DataEncoder object that has caller owned data.
The main reason for these modifications is to be able to use the DateEncoder objects instead of llvm::gsym::FileWriter in https://reviews.llvm.org/D113789. This patch wants to add the ability to create symbol table caching to LLDB and the code needs to build binary caches and save them to disk.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D115073
The test was flaky because it was trying to read from the (redirected)
stdout file before the data was been flushed to it. This would not be a
problem for a "normal" debug session, but since here the emulator and
the target binary coexist in the same process (and this is true both for
real qemu and our fake implementation), there
is a window of time between the stub returning an exit packet (which is
the event that the test is waiting for) and the process really exiting
(which is when the normal flushing happens).
This patch adds an explicit flush to work around this. Theoretically,
it's possible that real code could run into this issue as well, but such
a use case is not very likely. If we wanted to fix this for real, we
could add some code which waits for the host process to terminate (in
addition to receiving the termination packet), but this is somewhat
complicated by the fact that this code lives in the gdb-remote process
plugin.
This setting allows the user to pass additional arguments to the qemu instance.
While we may want to introduce dedicated settings for the most common qemu
arguments (-cpu, for one), having this setting allows us to avoid creating a
setting for every possible argument.
Differential Revision: https://reviews.llvm.org/D115151
This patch should fix a Windows test failure for the
InvalidScriptedThread test:
https://lab.llvm.org/buildbot/#/builders/83/builds/12571
This refactors the test to stop using python `tempfile` since it's not
supported on Windows and creates a logfile at runtime in the test folder.
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds support for arm64(e) targets to ScriptedProcess, by
providing the `DynamicRegisterInfo` to the base `lldb.ScriptedThread` class.
This allows create and debugging ScriptedProcess on Apple Silicon
hardware as well as Apple mobile devices.
It also replace the C++ asserts on `ScriptedThread::GetDynamicRegisterInfo`
by some error logging, re-enables `TestScriptedProcess` for arm64
Darwin platforms and adds a new invalid Scripted Thread test.
rdar://85892451
Differential Revision: https://reviews.llvm.org/D114923
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
While profiling lldb (from swift/llvm-project), these timers were noticed to be short lived and high firing, and so they add noise more than value.
The data points I recorded are:
`FindTypes_Impl`: 49,646 calls, 812ns avg, 40.33ms total
`AppendSymbolIndexesWithName`: 36,229 calls, 913ns avg, 33.09ms total
`FindAllSymbolsWithNameAndType`: 36,229 calls, 1.93µs avg, 70.05ms total
`FindSymbolsWithNameAndType`: 23,263 calls, 3.09µs avg, 71.88ms total
Differential Revision: https://reviews.llvm.org/D115182
This adds extra tests for libstdcpp and libcxx list and forward_list formatters to check whether formatter behaves correctly when applied on pointer and reference values.
Reviewed By: wallace
Differential Revision: https://reviews.llvm.org/D115137
This adds the formatters for libstdcpp's deque as a python
implementation. It adds comprehensive tests for the two different
storage strategies deque uses. Besides that, this fixes a couple of bugs
in the libcxx implementation. Finally, both implementation run against
the same tests.
This is a minor improvement on top of Danil Stefaniuc's formatter.
Lldb uses a pty to read/write to the standard input and output of the
debugged process. For host processes this would be automatically set up
by Target::FinalizeFileActions. The Qemu platform is in a unique
position of not really being a host platform, but not being remote
either. It reports IsHost() = false, but it is sufficiently host-like
that we can use the usual pty mechanism.
This patch adds the necessary glue code to enable pty redirection. It
includes a small refactor of Target::FinalizeFileActions and
ProcessLaunchInfo::SetUpPtyRedirection to reduce the amount of
boilerplate that would need to be copied.
I will note that qemu is not able to separate output from the emulated
program from the output of the emulator itself, so the two will arrive
intertwined. Normally this should not be a problem since qemu should not
produce any output during regular operation, but some output can slip
through in case of errors. This situation should be pretty obvious (to a
human), and it is the best we can do anyway.
For testing purposes, and inspired by lldb-server tests, I have extended
the mock emulator with the ability "program" the behavior of the
"emulated" program via command-line arguments.
Differential Revision: https://reviews.llvm.org/D114796
Recognize FreeBSD vmcores (kernel core dumps) through OS ABI = 0xFF
+ ELF version = 0, and do not process them via the elf-core plugin.
While these files use ELF as a container format, they contain raw memory
dump rather than proper VM segments and therefore are not usable
to the elf-core plugin.
Differential Revision: https://reviews.llvm.org/D114967
This patch fixes:
lldb/source/Plugins/Platform/Windows/PlatformWindows.cpp:386:13:
error: comparison between NULL and non-pointer ('lldb::addr_t' (aka
'unsigned long') and NULL) [-Werror,-Wnull-arithmetic]
This implements `DoLoadImage` and `UnloadImage` in the Windows platform
plugin modelled after the POSIX platform plugin. This was previously
unimplemented and resulted in a difficult to decipher error without any
logging.
This implementation is intended to support enables the use of LLDB's
Swift REPL on Windows.
Paths which are added to the library search path are persistent and
applied to all subsequent loads. This can be adjusted in the future by
storing all the cookies and restoring the path prior to returning from
the helper. However, the dynamic path count makes this a bit more
challenging.
Reviewed By: @JDevlieghere
Differential Revision: https://reviews.llvm.org/D77287
minidebuginfo-set-and-hit-breakpoint.test is failing on Arm/Linux most
probably due to an ill formed binary after removal of certain sections
from executable. I am marking it as XFAIL for further investigation.