As shown in:
https://llvm.org/bugs/show_bug.cgi?id=23203
...we currently die because lowering believes that mfence is allowed without SSE2 on x86-64,
but the instruction def doesn't know that.
I don't know if allowing mfence without SSE is right, but if not, at least now it's consistently wrong. :)
Differential Revision: http://reviews.llvm.org/D17219
llvm-svn: 260828
Changes in X86.td:
I set features of Intel processors in incremental form: IVB = SNB + X HSW = IVB + X ..
I added Skylake client processor and defined it's features
FeatureADX was missing on KNL
Added some new features to appropriate processors SMAP, IFMA, PREFETCHWT1, VMFUNC and others
Differential Revision: http://reviews.llvm.org/D16357
llvm-svn: 258659
The feature flag is for VPERMB,VPERMI2B,VPERMT2B and VPMULTISHIFTQB instructions.
More about the instruction can be found in:
hattps://software.intel.com/sites/default/files/managed/07/b7/319433-023.pdf
Differential Revision: http://reviews.llvm.org/D16190
llvm-svn: 258012
the feature flag is essential for RDPKRU and WRPKRU instruction
more about the instruction can be found in the SDM rev 56, vol 2 from http://www.intel.com/sdm
Differential Revision: http://reviews.llvm.org/D15491
llvm-svn: 255644
These instructions are not supported by all CPUs in 64-bit mode. Emitting them
causes Chromium to crash on start-up for users with such chips.
(GCC puts these instructions behind -msahf on 64-bit for the same reason.)
This patch adds FeatureLAHFSAHF, enables it by default for 32-bit targets
and modern CPUs, and changes X86InstrInfo::copyPhysReg back to the lowering
from before r244503 when the instructions are not available.
Differential Revision: http://reviews.llvm.org/D15240
llvm-svn: 254793
We currently output FMA instructions on targets which support both FMA4 + FMA (i.e. later Bulldozer CPUS bdver2/bdver3/bdver4).
This patch flips this so FMA4 is preferred; this is for several reasons:
1 - FMA4 is non-destructive reducing the need for mov instructions.
2 - Its more straighforward to commute and fold inputs (although the recent work on FMA has reduced this difference).
3 - All supported targets have FMA4 performance equal or better to FMA - Piledriver (bdver2) in particular has half the throughput when executing FMA instructions.
Its looks like no future AMD processor lines will support FMA4 after the Bulldozer series so we're not causing problems for later CPUs.
Differential Revision: http://reviews.llvm.org/D14997
llvm-svn: 254339
GNU tools require elfiamcu to take up the entire OS field, so, e.g.
i?86-*-linux-elfiamcu is not considered a legal triple.
Make us compatible.
Differential Revision: http://reviews.llvm.org/D14081
llvm-svn: 251390
This adds support for the i?86-*-elfiamcu triple, which indicates the IAMCU psABI is used.
Differential Revision: http://reviews.llvm.org/D13977
llvm-svn: 251222
its own variable.
This is needed so that we can explicitly turn off MMX without turning
off SSE and also so that we can diagnose feature set incompatibilities
that involve MMX without SSE.
Rationale:
// sse3
__m128d test_mm_addsub_pd(__m128d A, __m128d B) {
return _mm_addsub_pd(A, B);
}
// mmx
void shift(__m64 a, __m64 b, int c) {
_mm_slli_pi16(a, c);
_mm_slli_pi32(a, c);
_mm_slli_si64(a, c);
_mm_srli_pi16(a, c);
_mm_srli_pi32(a, c);
_mm_srli_si64(a, c);
_mm_srai_pi16(a, c);
_mm_srai_pi32(a, c);
}
clang -msse3 -mno-mmx file.c -c
For this code we should be able to explicitly turn off MMX
without affecting the compilation of the SSE3 function and then
diagnose and error on compiling the MMX function.
This matches the existing gcc behavior and follows the spirit of
the SSE/MMX separation in llvm where we can (and do) turn off
MMX code generation except in the presence of intrinsics.
Updated a couple of tests, but primarily tested with a couple of tests
for turning on only mmx and only sse.
This is paired with a patch to clang to take advantage of this behavior.
llvm-svn: 249731
Add two new ways of accessing the unsafe stack pointer:
* At a fixed offset from the thread TLS base. This is very similar to
StackProtector cookies, but we plan to extend it to other backends
(ARM in particular) soon. Bionic-side implementation here:
https://android-review.googlesource.com/170988.
* Via a function call, as a fallback for platforms that provide
neither a fixed TLS slot, nor a reasonable TLS implementation (i.e.
not emutls).
This is a re-commit of a change in r248357 that was reverted in
r248358.
llvm-svn: 248405
Add two new ways of accessing the unsafe stack pointer:
* At a fixed offset from the thread TLS base. This is very similar to
StackProtector cookies, but we plan to extend it to other backends
(ARM in particular) soon. Bionic-side implementation here:
https://android-review.googlesource.com/170988.
* Via a function call, as a fallback for platforms that provide
neither a fixed TLS slot, nor a reasonable TLS implementation (i.e.
not emutls).
llvm-svn: 248357
This is a 'no functional change intended' patch. It removes one FIXME, but adds several more.
Motivation: the FeatureFastUAMem attribute may be too general. It is used to determine if any
sized misaligned memory access under 32-bytes is 'fast'. From the added FIXME comments, however,
you can see that we're not consistent about this. Changing the name of the attribute makes it
clearer to see the logic holes.
Changing this to a 'slow' attribute also means we don't have to add an explicit 'fast' attribute
to new chips; fast unaligned accesses have been standard for several generations of CPUs now.
Differential Revision: http://reviews.llvm.org/D12154
llvm-svn: 245729
Although targeting CoreCLR is similar to targeting MSVC, there are
certain important differences that the backend must be aware of
(e.g. differences in stack probes, EH, and library calls).
Differential Revision: http://reviews.llvm.org/D11012
llvm-svn: 245115
All the usual X86 target-specific conventions are collapsed to the
normal Win64 convention, but the custom conventions like GHC and webkit
should not be.
Previously we would assume that the caller allocated 32 bytes of shadow
space for us, which is not how webkit_jscc or other custom conventions
are supposed to work.
Based on a patch by peavo@outlook.com.
Fixes PR24051.
llvm-svn: 241725
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
Summary:
This continues the patch series to eliminate StringRef forms of GNU triples
from the internals of LLVM that began in r239036.
Reviewers: rafael
Reviewed By: rafael
Subscribers: rafael, ted, jfb, llvm-commits, rengolin, jholewinski
Differential Revision: http://reviews.llvm.org/D10311
llvm-svn: 239467
The first try (r238051) to land this was reverted due to ExecutionEngine build failure;
that was hopefully addressed by r238788.
The second try (r238842) to land this was reverted due to BUILD_SHARED_LIBS failure;
that was hopefully addressed by r238953.
This patch adds a TargetRecip class for processing many recip codegen possibilities.
The class is intended to handle both command-line options to llc as well
as options passed in from a front-end such as clang with the -mrecip option.
The x86 backend is updated to use the new functionality.
Only -mcpu=btver2 with -ffast-math should see a functional change from this patch.
All other x86 CPUs continue to *not* use reciprocal estimates by default with -ffast-math.
Differential Revision: http://reviews.llvm.org/D8982
llvm-svn: 239001
Intel® Memory Protection Extensions (Intel® MPX) is a new feature in Skylake.
It is a part of KNL and SKX sets. It is also a part of Skylake client.
I added definition of %bnd0 - %bnd3 registers, each register is a pair of 64-bit integers.
llvm-svn: 238916
The first try (r238051) to land this was reverted due to bot failures
that were hopefully addressed by r238788.
This patch adds a TargetRecip class for processing many recip codegen possibilities.
The class is intended to handle both command-line options to llc as well
as options passed in from a front-end such as clang with the -mrecip option.
The x86 backend is updated to use the new functionality.
Only -mcpu=btver2 with -ffast-math should see a functional change from this patch.
All other x86 CPUs continue to *not* use reciprocal estimates by default with -ffast-math.
Differential Revision: http://reviews.llvm.org/D8982
llvm-svn: 238842
This patch adds a class for processing many recip codegen possibilities.
The TargetRecip class is intended to handle both command-line options to llc as well
as options passed in from a front-end such as clang with the -mrecip option.
The x86 backend is updated to use the new functionality.
Only -mcpu=btver2 with -ffast-math should see a functional change from this patch.
All other CPUs continue to *not* use reciprocal estimates by default with -ffast-math.
Differential Revision: http://reviews.llvm.org/D8982
llvm-svn: 238051
to use the information in the module rather than TargetOptions.
We've had and clang has used the use-soft-float attribute for some
time now so have the backends set a subtarget feature based on
a particular function now that subtargets are created based on
functions and function attributes.
For the one middle end soft float check go ahead and create
an overloadable TargetLowering::useSoftFloat function that
just checks the TargetSubtargetInfo in all cases.
Also remove the command line option that hard codes whether or
not soft-float is set by using the attribute for all of the
target specific test cases - for the generic just go ahead and
add the attribute in the one case that showed up.
llvm-svn: 237079
r224330 introduced a bug by misinterpreting the "FeatureVectorUAMem" bit.
The commit log says that change did not affect anything, but that's not correct.
That change allowed SSE instructions to have unaligned mem operands folded into
math ops, and that's not allowed in the default specification for any SSE variant.
The bug is exposed when compiling for an AVX-capable CPU that had this feature
flag but without enabling AVX codegen. Another mistake in r224330 was not adding
the feature flag to all AVX CPUs; the AMD chips were excluded.
This is part of the fix for PR22371 ( http://llvm.org/bugs/show_bug.cgi?id=22371 ).
This feature bit is SSE-specific, so I've renamed it to "FeatureSSEUnalignedMem".
Changed the existing test case for the feature bit to reflect the new name and
renamed the test file itself to better reflect the feature.
Added runs to fold-vex.ll to check for the failing codegen.
Note that the feature bit is not set by default on any CPU because it may require a
configuration register setting to enable the enhanced unaligned behavior.
llvm-svn: 227983
derived classes.
Since global data alignment, layout, and mangling is often based on the
DataLayout, move it to the TargetMachine. This ensures that global
data is going to be layed out and mangled consistently if the subtarget
changes on a per function basis. Prior to this all targets(*) have
had subtarget dependent code moved out and onto the TargetMachine.
*One target hasn't been migrated as part of this change: R600. The
R600 port has, as a subtarget feature, the size of pointers and
this affects global data layout. I've currently hacked in a FIXME
to enable progress, but the port needs to be updated to either pass
the 64-bitness to the TargetMachine, or fix the DataLayout to
avoid subtarget dependent features.
llvm-svn: 227113
This patch adds a feature flag to avoid unaligned 32-byte load/store AVX codegen
for Sandy Bridge and Ivy Bridge. There is no functionality change intended for
those chips. Previously, the absence of AVX2 was being used as a proxy to detect
this feature. But that hindered codegen for AVX-enabled AMD chips such as btver2
that do not have the 32-byte unaligned access slowdown.
Performance measurements are included in PR21541 ( http://llvm.org/bugs/show_bug.cgi?id=21541 ).
Differential Revision: http://reviews.llvm.org/D6355
llvm-svn: 222544
Windows itanium targets the MSVCRT, and the stack probe symbol is provided by
MSVCRT. This corrects the emission of stack probes on i686-windows-itanium.
llvm-svn: 222439
This is a first step for generating SSE rcp instructions for reciprocal
calcs when fast-math allows it. This is very similar to the rsqrt optimization
enabled in D5658 ( http://reviews.llvm.org/rL220570 ).
For now, be conservative and only enable this for AMD btver2 where performance
improves significantly both in terms of latency and throughput.
We may never enable this codegen for Intel Core* chips because the divider circuits
are just too fast. On SandyBridge, divss can be as fast as 10 cycles versus the 21
cycle critical path for the rcp + mul + sub + mul + add estimate.
Follow-on patches may allow configuration of the number of Newton-Raphson refinement
steps, add AVX512 support, and enable the optimization for more chips.
More background here: http://llvm.org/bugs/show_bug.cgi?id=21385
Differential Revision: http://reviews.llvm.org/D6175
llvm-svn: 221706
This is a first step for generating SSE rsqrt instructions for
reciprocal square root calcs when fast-math is allowed.
For now, be conservative and only enable this for AMD btver2
where performance improves significantly - for example, 29%
on llvm/projects/test-suite/SingleSource/Benchmarks/BenchmarkGame/n-body.c
(if we convert the data type to single-precision float).
This patch adds a two constant version of the Newton-Raphson
refinement algorithm to DAGCombiner that can be selected by any target
via a parameter returned by getRsqrtEstimate()..
See PR20900 for more details:
http://llvm.org/bugs/show_bug.cgi?id=20900
Differential Revision: http://reviews.llvm.org/D5658
llvm-svn: 220570