Binding MemRefs of f16 needs special handling as the type is not supported on
CPU. There was a bug in the type used.
Differential Revision: https://reviews.llvm.org/D86328
Add a folder to the affine.parallel op so that loop bounds expressions are canonicalized.
Additionally, a new AffineParallelNormalizePass is added to adjust affine.parallel ops so that the lower bound is always 0 and the upper bound always represents a range with a step size of 1.
Differential Revision: https://reviews.llvm.org/D84998
Removed the Standard to LLVM conversion patterns that were previously
pulled in for testing purposes. This helps to separate the conversion
to LLVM dialect of the MLIR module with both SPIR-V and Standard
dialects in it (particularly helpful for SPIR-V cpu runner). Also,
tests were changed accordingly.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D86285
- This utility to merge a block anywhere into another one can help inline single
block regions into other blocks.
- Modified patterns test to use the new function.
Differential Revision: https://reviews.llvm.org/D86251
Add the unsigned complements to the existing FPToSI and SIToFP operations in the
standard dialect, with one-to-one lowerings to the corresponding LLVM operations.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D85557
PDL presents a high level abstraction for the rewrite pattern infrastructure available in MLIR. This abstraction allows for representing patterns transforming MLIR, as MLIR. This allows for applying all of the benefits that the general MLIR infrastructure provides, to the infrastructure itself. This means that pattern matching can be more easily verified for correctness, targeted by frontends, and optimized.
PDL abstracts over various different aspects of patterns and core MLIR data structures. Patterns are specified via a `pdl.pattern` operation. These operations contain a region body for the "matcher" code, and terminate with a `pdl.rewrite` that either dispatches to an external rewriter or contains a region for the rewrite specified via `pdl`. The types of values in `pdl` are handle types to MLIR C++ types, with `!pdl.attribute`, `!pdl.operation`, and `!pdl.type` directly mapping to `mlir::Attribute`, `mlir::Operation*`, and `mlir::Value` respectively.
An example pattern is shown below:
```mlir
// pdl.pattern contains metadata similarly to a `RewritePattern`.
pdl.pattern : benefit(1) {
// External input operand values are specified via `pdl.input` operations.
// Result types are constrainted via `pdl.type` operations.
%resultType = pdl.type
%inputOperand = pdl.input
%root, %results = pdl.operation "foo.op"(%inputOperand) -> %resultType
pdl.rewrite(%root) {
pdl.replace %root with (%inputOperand)
}
}
```
This is a culmination of the work originally discussed here: https://groups.google.com/a/tensorflow.org/g/mlir/c/j_bn74ByxlQ
Differential Revision: https://reviews.llvm.org/D84578
Provide C API for MLIR standard attributes. Since standard attributes live
under lib/IR in core MLIR, place the C APIs in the IR library as well (standard
ops will go in a separate library).
Affine map and integer set attributes are only exposed as placeholder types
with IsA support due to the lack of C APIs for the corresponding types.
Integer and floating point attribute APIs expecting APInt and APFloat are not
exposed pending decision on how to support APInt and APFloat.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D86143
* The binding for Type is trivial and should be non-controversial.
* The way that I define the IntegerType should serve as a pattern for what I want to do next.
* I propose defining the rest of the standard types in this fashion and then generalizing for dialect types as necessary.
* Essentially, creating/accessing a concrete Type (vs interacting with the string form) is done by "casting" to the concrete type (i.e. IntegerType can be constructed with a Type and will throw if the cast is illegal).
* This deviates from some of our previous discussions about global objects but I think produces a usable API and we should go this way.
Differential Revision: https://reviews.llvm.org/D86179
If Memref has rank > 1 this pass emits N-1 loops around
TransferRead op and transforms the op itself to 1D read. Since vectors
must have static shape while memrefs don't the pass emits if condition
to prevent out of bounds accesses in case some memref dimension is smaller
than the corresponding dimension of targeted vector. This logic is fine
but authors forgot to apply `permutation_map` on loops upper bounds and
thus if condition compares induction variable to incorrect loop upper bound
(dimension of the memref) in case `permutation_map` is not identity map.
This commit aims to fix that.
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This greatly simplifies a large portion of the underlying infrastructure, allows for lookups of singleton classes to be much more efficient and always thread-safe(no locking). As a result of this, the dialect symbol registry has been removed as it is no longer necessary.
For users broken by this change, an alert was sent out(https://llvm.discourse.group/t/removing-kinds-from-attributes-and-types) that helps prevent a majority of the breakage surface area. All that should be necessary, if the advice in that alert was followed, is removing the kind passed to the ::get methods.
Differential Revision: https://reviews.llvm.org/D86121
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
mlir::registerDialect<mlir::standalone::StandaloneDialect>();
mlir::registerDialect<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
LinalgDistribution options to allow more general distributions.
Changing the signature of the callback to send in the ranges for all
the parallel loops and expect a vector with the Value to use for the
processor-id and number-of-processors for each of the parallel loops.
Differential Revision: https://reviews.llvm.org/D86095
There should be an equivalent std.floor op to std.ceil. This includes
matching lowerings for SPIRV, NVVM, ROCDL, and LLVM.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D85940
Create a reduction pass that accepts an optimization pass as argument
and only replaces the golden module in the pipeline if the output of the
optimization pass is smaller than the input and still exhibits the
interesting behavior.
Add a -test-pass option to test individual passes in the MLIR Reduce
tool.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D84783
This patch adds more op/type conversion support
necessary for `spirv-runner`:
- EntryPoint/ExecutionMode: currently removed since we assume
having only one kernel function in the kernel module.
- StorageBuffer storage class is now supported. We are not
concerned with multithreading so this is fine for now.
- Type conversion enhanced, now regular offsets and strides
for structs and arrays are supported (based on
`VulkanLayoutUtils`).
- Support of `spc.AccessChain` that is modelled with GEP op
in LLVM dialect.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D86109
When the operand to the linalg.tensor_reshape op is a splat constant,
the result can be replaced with a splat constant of the same value but
different type.
Differential Revision: https://reviews.llvm.org/D86117
Provide C API for MLIR standard types. Since standard types live under lib/IR
in core MLIR, place the C APIs in the IR library as well (standard ops will go
into a separate library). This also defines a placeholder for affine maps that
are necessary to construct a memref, but are not yet exposed to the C API.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D86094
According to the LLVM Language Reference, 'cmpxchg' accepts integer or pointer
types. Several MLIR tests were using it with floats as it appears possible to
programmatically construct and print such an instruction, but it cannot be
parsed back. Use integers instead.
Depends On D85899
Reviewed By: flaub, rriddle
Differential Revision: https://reviews.llvm.org/D85900
Legacy implementation of the LLVM dialect in MLIR contained an instance of
llvm::Module as it was required to parse LLVM IR types. The access to the data
layout of this module was exposed to the users for convenience, but in practice
this layout has always been the default one obtained by parsing an empty layout
description string. Current implementation of the dialect no longer relies on
wrapping LLVM IR types, but it kept an instance of DataLayout for
compatibility. This effectively forces a single data layout to be used across
all modules in a given MLIR context, which is not desirable. Remove DataLayout
from the LLVM dialect and attach it as a module attribute instead. Since MLIR
does not yet have support for data layouts, use the LLVM DataLayout in string
form with verification inside MLIR. Introduce the layout when converting a
module to the LLVM dialect and keep the default "" description for
compatibility.
This approach should be replaced with a proper MLIR-based data layout when it
becomes available, but provides an immediate solution to compiling modules with
different layouts, e.g. for GPUs.
This removes the need for LLVMDialectImpl, which is also removed.
Depends On D85650
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D85652
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
The convresion of memref cast operaitons from the Standard dialect to the LLVM
dialect has been emitting bitcasts from a struct type to itself. Beyond being
useless, such casts are invalid as bitcast does not operate on aggregate types.
This kept working by accident because LLVM IR bitcast construction API skips
the construction if types are equal before it verifies that the types are
acceptable in a bitcast. Do not emit such bitcasts, the memref cast that only
adds/erases size information is in fact a noop on the current descriptor as it
always contains dynamic values for all sizes.
Reviewed By: pifon2a
Differential Revision: https://reviews.llvm.org/D85899
Masked loading/storing in various forms can be optimized
into simpler memory operations when the mask is all true
or all false. Note that the backend does similar optimizations
but doing this early may expose more opportunities for further
optimizations. This further prepares progressively lowering
transfer read and write into 1-D memory operations.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D85769
This exercises the corner case that was fixed in
https://reviews.llvm.org/rG8979a9cdf226066196f1710903d13492e6929563.
The bug can be reproduced when there is a @callee with a custom type argument and @caller has a producer of this argument passed to the @callee.
Example:
func @callee(!test.test_type) -> i32
func @caller() -> i32 {
%arg = "test.type_producer"() : () -> !test.test_type
%out = call @callee(%arg) : (!test.test_type) -> i32
return %out : i32
}
Even though there is a type conversion for !test.test_type, the output IR (before the fix) contained a DialectCastOp:
module {
llvm.func @callee(!llvm.ptr<i8>) -> !llvm.i32
llvm.func @caller() -> !llvm.i32 {
%0 = llvm.mlir.null : !llvm.ptr<i8>
%1 = llvm.mlir.cast %0 : !llvm.ptr<i8> to !test.test_type
%2 = llvm.call @callee(%1) : (!test.test_type) -> !llvm.i32
llvm.return %2 : !llvm.i32
}
}
instead of
module {
llvm.func @callee(!llvm.ptr<i8>) -> !llvm.i32
llvm.func @caller() -> !llvm.i32 {
%0 = llvm.mlir.null : !llvm.ptr<i8>
%1 = llvm.call @callee(%0) : (!llvm.ptr<i8>) -> !llvm.i32
llvm.return %1 : !llvm.i32
}
}
Differential Revision: https://reviews.llvm.org/D85914
-- This commit handles the returnOp in memref map layout normalization.
-- An initial filter is applied on FuncOps which helps us know which functions can be
a suitable candidate for memref normalization which doesn't lead to invalid IR.
-- Handles memref map normalization for external function assuming the external function
is normalizable.
Differential Revision: https://reviews.llvm.org/D85226
Provide printing functions for most IR objects in C API (except Region that
does not have a `print` function, and Module that is expected to be printed as
Operation instead). The printing is based on a callback that is called with
chunks of the string representation and forwarded user-defined data.
Reviewed By: stellaraccident, Jing, mehdi_amini
Differential Revision: https://reviews.llvm.org/D85748
This patch adds the translation of the proc_bind clause in a
parallel operation.
The values that can be specified for the proc_bind clause are
specified in the OMP.td tablegen file in the llvm/Frontend/OpenMP
directory. From this single source of truth enumeration for
proc_bind is generated in llvm and mlir (used in specification of
the parallel Operation in the OpenMP dialect). A function to return
the enum value from the string representation is also generated.
A new header file (DirectiveEmitter.h) containing definitions of
classes directive, clause, clauseval etc is created so that it can
be used in mlir as well.
Reviewers: clementval, jdoerfert, DavidTruby
Differential Revision: https://reviews.llvm.org/D84347
Inital conversion of `spv._address_of` and `spv.globalVariable`.
In SPIR-V, the global returns a pointer, whereas in LLVM dialect
the global holds an actual value. This difference is handled by
`spv._address_of` and `llvm.mlir.addressof`ops that both return
a pointer. Moreover, only current invocation is in conversion's
scope.
Reviewed By: antiagainst, mravishankar
Differential Revision: https://reviews.llvm.org/D84626
Now that LLVM dialect types are implemented directly in the dialect, we can use
MLIR hooks for verifying type construction invariants. Implement the verifiers
and use them in the parser.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85663
Linalg to processors.
This changes adds infrastructure to distribute the loops generated in
Linalg to processors at the time of generation. This addresses use
case where the instantiation of loop is done just to distribute
them. The option to distribute is added to TilingOptions for now and
will allow specifying the distribution as a transformation option,
just like tiling and promotion are specified as options.
Differential Revision: https://reviews.llvm.org/D85147
- Fix ODS framework to suppress build methods that infer result types and are
ambiguous with collective variants. This applies to operations with a single variadic
inputs whose result types can be inferred.
- Extended OpBuildGenTest to test these kinds of ops.
Differential Revision: https://reviews.llvm.org/D85060