link.exe requires that the text section has the IMAGE_SCN_MEM_16BIT flag set.
Otherwise, it will treat the function as ARM. If this occurs, then jumps to the
function will fail, switching from thumb to ARM mode execution.
With this change, it is possible to link using the MSVC linker as well.
llvm-svn: 210415
In an effort to fix inlined debug info in situations where the out of
line definition of a function preceeds any inlined usage, the order in
which some attributes are added to subprogram DIEs may change. (in
essence, definition-necessary attributes like DW_AT_low_pc/high_pc will
be added immediately, but the names, types, and other features will be
delayed to module end where they may either be added to the subprogram
DIE or instead reference an abstract definition for those values)
These tests can be generalized to be resilient to this change. 5 or so
tests actually have to be incompatibly changed to cope with this
reordering and will go along with the change that affects the order.
llvm-svn: 209554
This corrects the emission of IMAGE_REL_ARM_MOV32T relocations. Previously, we
were avoiding the high portion of the relocation too early. If there was a
section-relative relocation with an offset greater than 16-bits (65535), you
would end up truncating the high order bits of the offset. Allow the current
relocation representation to flow through out the MC layer to the object writer.
Use the new ability to restrict recorded relocations to avoid emitting the
relocation into the final object.
llvm-svn: 209337
The UDF instruction is a reserved undefined instruction space. The assembler
mnemonic was introduced with ARM ARM rev C.a. The instruction is not predicated
and the immediate constant is ignored by the CPU. Add support for the three
encodings for this instruction.
The changes to the invalid instruction test is due to the fact that the invalid
instructions actually overlap with the undefined instruction. Introduction of
the new instruction results in a partial decode as an undefined sequence. Drop
the tests as they are invalid instruction patterns anyways.
llvm-svn: 208751
This adds FK_SecRel_2 relocation support to ARM. This enables the building of
object files for armv7-windows-msvc which enables CodeView line tables for
debugging as opposed to armv7-windows-itanium which currently uses DWARF.
llvm-svn: 208273
Add handling for FK_SecRel_4 (4-byte section relative relocations). These are
used by the generation of DWARF debug information (the abbrevations use section
relative relocations). This will also be used in generation of CodeView line
tables.
llvm-svn: 207941
.file records are supposed to have a section identifier of 65534
(IMAGE_SCN_DEBUG) rather than 0. This is spelt out clearly within the PE/COFF
specification. Fix this minor oversight with the implementation for support for
.file records.
llvm-svn: 207851
We currently force symbols to be globals in .thumb_set. The intent
seems to be that given
.thumb_set foo, bar
we emit an undefined symbol to bar if it is never defined. The side
effect is that we mark bar as global, even if it is defined, which gas
does not.
Producing an undefined reference to bar is a general difference from MC and gas.
For example, given
a = b
gas will produce an undefined reference to b, MC will not. I would be surprised
if any code depends on this, but it it does, we should fix the general
difference, not special case .thumb_set.
llvm-svn: 207757
Emit the COFF header when printing out the function. This is important as the
header contains two important pieces of information: the storage class for the
symbol and the symbol type information. This bit of information is required for
the linker to correctly identify the type of symbol that it is dealing with.
llvm-svn: 207613
This patch centralizes the handling of the thumb bit around
MCStreamer::isThumbFunc and makes isThumbFunc handle aliases.
This fixes a corner case, but the main advantage is having just one
way to check if a MCSymbol is thumb or not. This should still be
refactored to be ARM only, but at least now it is just one predicate
that has to be refactored instead of 3 (isThumbFunc,
ELF_Other_ThumbFunc, and SF_ThumbFunc).
llvm-svn: 207522
Added support for bytes replication feature, so it could be GAS compatible.
E.g. instructions below:
"vmov.i32 d0, 0xffffffff"
"vmvn.i32 d0, 0xabababab"
"vmov.i32 d0, 0xabababab"
"vmov.i16 d0, 0xabab"
are incorrect, but we could deal with such cases.
For first one we should emit:
"vmov.i8 d0, 0xff"
For second one ("vmvn"):
"vmov.i8 d0, 0x54"
For last two instructions it should emit:
"vmov.i8 d0, 0xab"
P.S.: In ARMAsmParser.cpp I have also fixed few nearby style issues in old code.
Just for keeping method bodies in harmony with themselves.
llvm-svn: 207080
expressions for mov instructions instead of silently truncating by default.
For the ARM assembler, we want to avoid misleadingly allowing something
like "mov r0, <symbol>" especially when we turn it into a movw and the
expression <symbol> does not have a :lower16: or :upper16" as part of the
expression. We don't want the behavior of silently truncating, which can be
unexpected and lead to bugs that are difficult to find since this is an easy
mistake to make.
This does change the previous behavior of llvm but actually matches an
older gnu assembler that would not allow this but print less useful errors
of like “invalid constant (0x927c0) after fixup” and “unsupported relocation on
symbol foo”. The error for llvm is "immediate expression for mov requires
:lower16: or :upper16" with correct location information on the operand
as shown in the added test cases.
rdar://12342160
llvm-svn: 206669
Currently, we bind those directives with the last symbol, so if none
has been defined, this would lead to a crash of the compiler.
<rdar://problem/15939159>
llvm-svn: 206236
alignments on vld/vst instructions. And report errors for
alignments that are not supported.
While this is a large diff and an big test case, the changes
are very straight forward. But pretty much had to touch
all vld/vst instructions changing the addrmode to one of the
new ones that where added will do the proper checking for
the specific instruction.
FYI, re-committing this with a tweak so MemoryOp's default
constructor is trivial and will work with MSVC 2012. Thanks
to Reid Kleckner and Jim Grosbach for help with the tweak.
rdar://11312406
llvm-svn: 205986
It doesn't build with MSVC 2012, because MSVC doesn't allow union
members that have non-trivial default constructors. This change added
'SMLoc AlignmentLoc' to MemoryOp, which made MemoryOp's default ctor
non-trivial.
This reverts commit r205930.
llvm-svn: 205944
alignments on vld/vst instructions. And report errors for
alignments that are not supported.
While this is a large diff and an big test case, the changes
are very straight forward. But pretty much had to touch
all vld/vst instructions changing the addrmode to one of the
new ones that where added will do the proper checking for
the specific instruction.
rdar://11312406
llvm-svn: 205930
Removed "GNU Assembler extension (compatibility)" definitions from ARMInstrInfo.td
Fixed ARMAsmParser::ParseInstruction GNU compatability branch, so it also works for thumb mode from now.
Added new tests.
llvm-svn: 205622
More updating of tests to be explicit about the target triple rather than
relying on the default target triple supporting ARM mode.
Indicate to lit that object emission is not yet available for Windows on ARM.
llvm-svn: 205545
This changes the tests that were targeting ARM EABI to explicitly specify the
environment rather than relying on the default. This breaks with the new
Windows on ARM support when running the tests on Windows where the default
environment is no longer EABI.
Take the opportunity to avoid a pointless redirect (helps when trying to debug
with providing a command line invocation which can be copy and pasted) and
removing a few greps in favour of FileCheck.
llvm-svn: 205541
The trouble as in ARMAsmParser, in ParseInstruction method. It assumes that ARM::R12 + 1 == ARM::SP.
It is wrong, since ARM::<Register> codes are generated by tablegen and actually could be any random numbers.
llvm-svn: 205524
Issue subject: Crash using integrated assembler with immediate arithmetic
Fix description:
Expressions like 'cmp r0, #(l1 - l2) >> 3' could not be evaluated on asm parsing stage,
since it is impossible to resolve labels on this stage. In the end of stage we still have
expression (MCExpr).
Then, when we want to encode it, we expect it to be an immediate, but it still an expression.
Patch introduces a Fixup (MCFixup instance), that is processed after main encoding stage.
llvm-svn: 205094
I started trying to fix a small issue, but this code has seen a small fix too
many.
The old code was fairly convoluted. Some of the issues it had:
* It failed to check if a symbol difference was in the some section when
converting a relocation to pcrel.
* It failed to check if the relocation was already pcrel.
* The pcrel value computation was wrong in some cases (relocation-pc.s)
* It was missing quiet a few cases where it should not convert symbol
relocations to section relocations, leaving the backends to patch it up.
* It would not propagate the fact that it had changed a relocation to pcrel,
requiring a quiet nasty work around in ARM.
* It was missing comments.
llvm-svn: 205076
Fix description:
Expressions like 'cmp r0, #(l1 - l2) >> 3' could not be evaluated on asm parsing stage,
since it is impossible to resolve labels on this stage. In the end of stage we still have
expression (MCExpr).
Then, when we want to encode it, we expect it to be an immediate, but it still an expression.
Patch introduces a Fixup (MCFixup instance), that is processed after main encoding stage.
llvm-svn: 204899
When a label is parsed, check if there is type information available for the
label. If so, check if the symbol is a function. If the symbol is a function
and we are in thumb mode and no explicit thumb_func has been emitted, adjust the
symbol data to indicate that the function definition is a thumb function.
The application of this inferencing is improved value handling in the object
file (the required thumb bit is set on symbols which are thumb functions). It
also helps improve compatibility with binutils.
The one complication that arises from this handling is the MCAsmStreamer. The
default implementation of getOrCreateSymbolData in MCStreamer does not support
tracking the symbol data. In order to support the semantics of thumb functions,
track symbol data in assembly streamer. Although O(n) in number of labels in
the TU, this is already done in various other streamers and as such the memory
overhead is not a practical concern in this scenario.
llvm-svn: 204544
The revision I'm reverting breaks handling of transitive aliases. This blocks us
and breaks sanitizer bootstrap:
http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-bootstrap/builds/2651
(and checked locally by Alexey).
This revision is the result of:
svn merge -r204059:204058 -r204028:204027 -r203962:203961 .
+ the regression test added to test/MC/ELF/alias.s
Another way to reproduce the regression with clang:
$ cat q.c
void a1();
void a2() __attribute__((alias("a1")));
void a3() __attribute__((alias("a2")));
void a1() {}
$ ~/work/llvm-build/bin/clang-3.5-good -c q.c && mv q.o good.o && \
~/work/llvm-build/bin/clang-3.5-bad -c q.c && mv q.o bad.o && \
objdump -t good.o bad.o
good.o: file format elf64-x86-64
SYMBOL TABLE:
0000000000000000 l df *ABS* 0000000000000000 q.c
0000000000000000 l d .text 0000000000000000 .text
0000000000000000 l d .data 0000000000000000 .data
0000000000000000 l d .bss 0000000000000000 .bss
0000000000000000 l d .comment 0000000000000000 .comment
0000000000000000 l d .note.GNU-stack 0000000000000000 .note.GNU-stack
0000000000000000 l d .eh_frame 0000000000000000 .eh_frame
0000000000000000 g F .text 0000000000000006 a1
0000000000000000 g F .text 0000000000000006 a2
0000000000000000 g F .text 0000000000000006 a3
bad.o: file format elf64-x86-64
SYMBOL TABLE:
0000000000000000 l df *ABS* 0000000000000000 q.c
0000000000000000 l d .text 0000000000000000 .text
0000000000000000 l d .data 0000000000000000 .data
0000000000000000 l d .bss 0000000000000000 .bss
0000000000000000 l d .comment 0000000000000000 .comment
0000000000000000 l d .note.GNU-stack 0000000000000000 .note.GNU-stack
0000000000000000 l d .eh_frame 0000000000000000 .eh_frame
0000000000000000 g F .text 0000000000000006 a1
0000000000000000 g F .text 0000000000000006 a2
0000000000000000 g .text 0000000000000000 a3
llvm-svn: 204137
This performs the equivalent of a .set directive in that it creates a symbol
which is an alias for another symbol or value which may possibly be yet
undefined. This directive also has the added property in that it marks the
aliased symbol as being a thumb function entry point, in the same way that the
.thumb_func directive does.
The current implementation fails one test due to an unrelated issue. Functions
within .thumb sections are not marked as thumb_func. The result is that
the aliasee function is not valued correctly.
llvm-svn: 204059
Support to the IAS was added to actually parse and handle the complex SO
expressions. However, the object file lowering was not updated to compensate
for the fact that the shift operand may be an absolute expression.
When trying to assemble to an object file, the lowering would fail while
succeeding when emitting purely assembly. Add an appropriate test.
The test case is inspired by the test case provided by Jiangning Liu who also
brought the issue to light.
llvm-svn: 203762
.align is handled specially on certain targets. .align without any parameters
on ARM indicates a default alignment (4). Handle the special case in the target
parser, but fall back to the generic parser for the normal version.
llvm-svn: 201988
This adds support for the .short and its alias .hword for adding literal values
into the object file. This is similar to the .word directive, however, rather
than inserting a value of 4 bytes, adds a 2-byte value.
llvm-svn: 201968
ldrd r6, r7 [r2, #15]
simply gives an error and does not triggers an assertion.
As Jim points out, the diagnostic is really strange here,
but fixing that would be more complicated. The missing
comma results in the parser expecting a construct like r2[2],
which is the vector index thing the error message is talking
about. That's not what the user intended, though, and there's
nothing else in the instruction that looks at all like a vector.
Yet more fallout from not having a real parser here and trying
to do context-free generic matching for addressing modes.
rdar://15097243
llvm-svn: 201531
This adds a partial implementation of the .arch_extension directive to the
integrated ARM assembler. There are a number of limitations to this
implementation arising from the target backend support rather than the
implementation itself. Namely, iWMMXT (v1 and v2), Maverick, and XScale support
is not present in the ARM backend. Currently, there is no check for A-class
only (needed for virt), and no ARMv6k detection (needed for os and sec). The
remainder of the extensions are fully supported.
llvm-svn: 201471
This makes the tests more readable by using the -arm-attributes decoding support
in llvm-readobj since that is now available. Change the invocation commands to
be similar to other test and use a more precise triple (the tests only require
ARM EABI support).
llvm-svn: 201029
In Thumb1 mode, bl instruction might be selected for branches between
basic blocks in the function if the offset is greater than 2KB.
However, this might cause SEGV because the destination symbol
is not marked as thumb function and the execution mode will be reset
to ARM mode.
Since we are sure that these symbols are in the same data fragment, we
can simply resolve these local symbols, and don't emit any relocation
information for this bl instruction.
llvm-svn: 200842
The .object_arch directive indicates an alternative architecture to be specified
in the object file. The directive does *not* effect the enabled feature bits
for the object file generation. This is particularly useful when the code
performs runtime detection and would like to indicate a lower architecture as
the requirements than the actual instructions used.
llvm-svn: 200451
.movsp is an ARM unwinding directive that indicates to the unwinder that a
register contains an offset from the current stack pointer. If the offset is
unspecified, it defaults to zero.
llvm-svn: 200449
This enhances the ARMAsmParser to handle .tlsdescseq directives. This is a
slightly special relocation. We must be able to generate them, but not consume
them in assembly. The relocation is meant to assist the linker in generating a
TLS descriptor sequence. The ELF target streamer is enhanced to append
additional fixups into the current segment and that is used to emit the new
R_ARM_TLS_DESCSEQ relocations.
llvm-svn: 200448
Add support for tlsdesc relocations which are part of the ABI, marked as
experimental. These relocations permit the linker to perform TLS reference
optimizations.
llvm-svn: 200447
This adds support for TLS CALL relocations. TLS CALL relocations are used to
indicate to the linker to generate appropriate entries to resolve TLS references
via an appropriate function invocation (e.g. __tls_get_addr(PLT)).
In order to accomodate the linker relaxation of the TLS access model for the
references (GD/LD -> IE, IE -> LE), the relocation addend must be incomplete.
This requires that the partial inplace value is also incomplete (i.e. 0). We
simply avoid the offset value calculation at the time of the fixup adjustment in
the ARM assembler backend.
llvm-svn: 200446
After all hard work to implement the EHABI and with the test-suite
passing, it's time to turn it on by default and allow users to
disable it as a work-around while we fix the eventual bugs that show
up.
This commit also remove the -arm-enable-ehabi-descriptors, since we
want the tables to be printed every time the EHABI is turned on
for non-Darwin ARM targets.
Although MCJIT EHABI is not working yet (needs linking with the right
libraries), this commit also fixes some relocations on MCJIT regarding
the EH tables/lib calls, and update some tests to avoid using EH tables
when none are needed.
The EH tests in the test-suite that were previously disabled on ARM
now pass with these changes, so a follow-up commit on the test-suite
will re-enable them.
llvm-svn: 200388
This brings MC into line with GNU 'as' on ARM, and it brings the ARM
target into line with most other LLVM targets, which declare the
initial CFI state with addInitialFrameState().
Without this, functions generated with .cfi_startproc/endproc on ARM
will tend to cause GDB to abort with:
gdb/dwarf2-frame.c:1132: internal-error: Unknown CFA rule.
I've also tested this by comparing the output of "readelf -w" on the
object files produced by llvm-mc and gas when given the .s file added
here.
This change is part of addressing PR18636.
Differential Revision: http://llvm-reviews.chandlerc.com/D2597
llvm-svn: 200255
Placed the MC variant diagnostics in the wrong directory accidentally. Move
them into their respective architecture specific directories.
llvm-svn: 200161
If a complex expression was passed to the .word directive and the first part of
the directive failed to parse, a secondary diagnostic would be produced that
would clutter the error diagnostics. Improve the diagnostics by consuming the
remainder of the statement.
llvm-svn: 200160
Add support to llvm-readobj to decode the actual opcodes. The ARM EHABI opcodes
are a variable length instruction set that describe the operations required for
properly unwinding stack frames.
The primary motivation for this change is to ease the creation of tests for the
ARM EHABI object emission as well as the unwinding directive handling in the ARM
IAS.
Thanks to Logan Chien for an extra test case!
llvm-svn: 199708
This implements the unwind_raw directive for the ARM IAS. The unwind_raw
directive takes the form of a stack offset value followed by one or more bytes
representing the opcodes to be emitted. The opcode emitted will interpreted as
if it were assembled by the opcode assembler via the standard unwinding
directives.
Thanks to Logan Chien for an extra test!
llvm-svn: 199707
The .personalityindex directive is equivalent to the .personality directive with
the ARM EABI personality with the specific index (0, 1, 2). Both of these
directives indicate personality routines, so enhance the personality directive
handling to take into account personalityindex.
Bonus fix: flush the UnwindContext at the beginning of a new function.
Thanks to Logan Chien for additional tests!
llvm-svn: 199706
Ensure that the tag types are reflected on a replacement. This is particularly
important for the compatibility tag which has multiple representations where the
last definition wins.
llvm-svn: 199577
Fix MLA defs to use register class GPRnopc.
Add encoding tests for multiply instructions.
(Alias for MUL/SMLAL/UMLAL added by r199026.)
Patch by Zhaoshi.
llvm-svn: 199491
ARM assembly syntax uses @ for a comment, execpt for the second
parameter of the .symver directive which requires @ as part of the
symbol name. This commit fixes the parsing of this directive by
adding a special case for ARM for this one argumnet.
To make the change we had to move the AllowAtInIdentifier variable
to the MCAsmLexer interface (from AsmLexer) and expose a setter for
the value. The ELFAsmParser then toggles this value when parsing
the second argument to the .symver directive for a target that
uses @ as a comment symbol
llvm-svn: 199339
An improper qualifier would result in a superfluous error due to the parser not
consuming the remainder of the statement. Simply consume the remainder of the
statement to avoid the error.
llvm-svn: 199035
The implicit immediate 0 forms are assembly aliases, not distinct instruction
encodings. Fix the initial implementation introduced in r198914 to an alias to
avoid two separate instruction definitions for the same encoding.
An InstAlias is insufficient in this case as the necessary due to the need to
add a new additional operand for the implicit zero. By using the AsmPsuedoInst,
fall back to the C++ code to transform the instruction to the equivalent
_POST_IMM form, inserting the additional implicit immediate 0.
llvm-svn: 199032
A 32-bit immediate value can be formed from a constant expression and loaded
into a register. Add support to emit this into an object file. Because this
value is a constant, a relocation must *not* be produced for it.
llvm-svn: 199023
The GNU assembler supports prefixing the expression with a '#' to indiciate that
the value that is being moved is infact a constant. This improves the
compatibility of the integrated assembler's parser for this.
llvm-svn: 198916
The GNU assembler has an extension that allows for the elision of the paired
register (dt2) for the LDRD and STRD mnemonics. Add support for this in the
assembly parser. Canonicalise the usage during the instruction parsing from
the specified version.
llvm-svn: 198915
The ARM ARM indicates the mnemonics as follows:
ldrbt{<c>}{<q>} <Rt>, [<Rn>], {, #+/-<imm>}
ldrt{<c>}{<q>} <Rt>, [<Rn>] {, #+/-<imm>}
strbt{<c>}{<q>} <Rt>, [<Rn>] {, #<imm>}
strt{<c>}{<q>} <Rt>, [<Rn>] {, #+/-<imm>}
This improves the parser to deal with the implicit immediate 0 for the mnemonics
as per the specification.
Thanks to Joerg Sonnenberger for the tests!
llvm-svn: 198914
Operands which involved label arithemetic would previously fail to parse. This
corrects that by adding the additional case for the shift operand validation.
llvm-svn: 198735
This commit adds the pre-UAL aliases of fconsts and fconstd for
vmov.f32 and vmov.f64. They use an InstAlias rather than a
MnemonicAlias to properly support the predicate operand.
We need to support encoded 8-bit constants in order to implement the
pre-UAL fconsts/fconstd aliases for vmov.f32/vmov.f64, so this
commit also fixes parsing of encoded floating point constants used
in vmov.f32/vmov.f64 instructions. Now we can support assembly code
like this:
fconsts s0, #0x70
which is equivalent to vmov.f32 s0, #1.0.
Most of the code was already in place to support this feature.
Previously the code was trying to accept encoded 8-bit float
constants for the vmov.f32/vmov.f64 instructions. It looks like the
support for parsing encoded floats was lost in a refactoring in
commit r148556 and we did not have any tests in place to catch it.
The change in this commit is to keep the parsed value as a 32-bit
float instead of a 64-bit double because that is what the isFPImm()
function expects to find. There is no loss of precision by using a
32-bit float here because we are still limited to an 8-bit encoded
value in the end.
Additionally, we explicitly reject encoded 8-bit floats for
vmovf.32/64. This is the same as the current behavior, but we now do
it explicitly rather than accidently.
llvm-svn: 198697
Move the unwinding context for the ARM IAS into a helper class. This is purely
a structural refactoring. A follow up change allows for recording additional
depth to improve diagnostics.
llvm-svn: 198664
Parse tag names as well as expressions. The former is part of the
specification, the latter is for improved compatibility with the GNU assembler.
Fix attribute value handling to be comformant to the specification.
llvm-svn: 198662
Introduce a new virtual method Note into the AsmParser. This completements the
existing Warning and Error methods. Use the new method to clean up the output
of the unwind routines in the ARM AsmParser.
llvm-svn: 198661
Checking the trailing letter of the mnemonic is insufficient. Be more thorough
in the scanning of the instruction to ensure that we correctly work with the
predicated mnemonics.
llvm-svn: 198235
The bkpt mnemonic has an implicit immediate constant of 0 unless otherwise
specified. Add an instruction alias for the unvalued breakpoint mnemonic to
treat it as a 0. This improves compatibility with GNU AS.
Signed-off-by: Saleem Abdulrasool <compnerd@compnerd.org>
llvm-svn: 197913
This directive will write out the assembler-maintained constant
pool for the current section. These constant pools are created to
support the ldr-pseudo instruction (e.g. ldr r0, =val).
The directive can be used by the programmer to place the constant
pool in a location that can be reached by a pc-relative offset in
the ldr instruction.
llvm-svn: 197711
The ldr-pseudo opcode is a convenience for loading 32-bit constants.
It is converted into a pc-relative load from a constant pool. For
example,
ldr r0, =0x10001
ldr r1, =bar
will generate this output in the final assembly
ldr r0, .Ltmp0
ldr r1, .Ltmp1
...
.Ltmp0: .long 0x10001
.Ltmp1: .long bar
Sketch of the LDR pseudo implementation:
Keep a map from Section => ConstantPool
When parsing ldr r0, =val
parse val as an MCExpr
get ConstantPool for current Section
Label = CreateTempSymbol()
remember val in ConstantPool at next free slot
add operand to ldr that is MCSymbolRef of Label
On finishParse() callback
Write out all non-empty constant pools
for each Entry in ConstantPool
Emit Entry.Label
Emit Entry.Value
Possible improvements to be added in a later patch:
1. Does not convert load of small constants to mov
(e.g. ldr r0, =0x1 => mov r0, 0x1)
2. Does reuse constant pool entries for same constant
The implementation was tested for ARM, Thumb1, and Thumb2 targets on
linux and darwin.
llvm-svn: 197708
This adds support for the .inst directive. This is an ARM specific directive to
indicate an instruction encoded as a constant expression. The major difference
between .word, .short, or .byte and .inst is that the latter will be
disassembled as an instruction since it does not get flagged as data.
llvm-svn: 197657
The integrated assembler fails to properly lex arm comments when
they are adjacent to an identifier in the input stream. The reason
is that the arm comment symbol '@' is also used as symbol variant in
other assembly languages so when lexing an identifier it allows the
'@' symbol as part of the identifier.
Example:
$ cat comment.s
foo:
add r0, r0@got to parse this as a comment
$ llvm-mc -triple armv7 comment.s
comment.s:4:18: error: unexpected token in argument list
add r0, r0@got to parse this as a comment
^
This should be parsed as correctly as `add r0, r0`.
This commit modifes the assembly lexer to not include the '@' symbol
in identifiers when lexing for targets that use '@' for comments.
llvm-svn: 196607
ARM symbol variants are written with parens instead of @ like this:
.word __GLOBAL_I_a(target1)
This commit adds support for parsing these symbol variants in
expressions. We introduce a new flag to MCAsmInfo that indicates the
parser should use parens to parse the symbol variant. The expression
parser is modified to look for symbol variants using parens instead
of @ when the corresponding MCAsmInfo flag is true.
The MCAsmInfo parens flag is enabled only for ARM on ELF.
By adding this flag to MCAsmInfo, we are able to get rid of
redundant ARM-specific symbol variants and use the generic variants
instead (e.g. VK_GOT instead of VK_ARM_GOT). We use the new
UseParensForSymbolVariant attribute in MCAsmInfo to correctly print
the symbol variants for arm.
To achive this we need to keep a handle to the MCAsmInfo in the
MCSymbolRefExpr class that we can check when printing the symbol
variant.
Updated Tests:
Changed case of symbol variant to match the generic kind.
test/CodeGen/ARM/tls-models.ll
test/CodeGen/ARM/tls1.ll
test/CodeGen/ARM/tls2.ll
test/CodeGen/Thumb2/tls1.ll
test/CodeGen/Thumb2/tls2.ll
PR18080
llvm-svn: 196424
This patch fixes a bug in the assembler that was causing bad code to
be emitted. When switching modes in an assembly file (e.g. arm to
thumb mode) we would always emit the opcode from the original mode.
Consider this small example:
$ cat align.s
.code 16
foo:
add r0, r0
.align 3
add r0, r0
$ llvm-mc -triple armv7-none-linux align.s -filetype=obj -o t.o
$ llvm-objdump -triple thumbv7 -d t.o
Disassembly of section .text:
foo:
0: 00 44 add r0, r0
2: 00 f0 20 e3 blx #4195904
6: 00 00 movs r0, r0
8: 00 44 add r0, r0
This shows that we have actually emitted an arm nop (e320f000)
instead of a thumb nop. Unfortunately, this encodes to a thumb
branch which causes bad things to happen when compiling assembly
code with align directives.
The fix is to notify the ARMAsmBackend when we switch mode. The
MCMachOStreamer was already doing this correctly. This patch makes
the same change for the MCElfStreamer.
There is still a bug in the way nops are emitted for alignment
because the MCAlignment fragment does not store the correct mode.
The ARMAsmBackend will emit nops for the last mode it knew about. In
the example above, we still generate an arm nop if we add a `.code
32` to the end of the file.
PR18019
llvm-svn: 195677
The system LDM and STM instructions can't usually writeback to the base
register. The one exception is when an LDM is actually an exception-return
(i.e. contains PC in the register list).
(There's already a test that "ldm sp!, {r0-r3, pc}^" works, which is why there
is no positive test).
rdar://problem/15223374
llvm-svn: 194512
Cortex-M0 supports these 32-bit instructions despite being Thumb1 only
(mostly). We knew about that but not that the aliases without the default "sy"
operand were also permitted.
llvm-svn: 194094
Adds a subtarget feature for the CRC instructions (optional in v8-A) to the ARM (32-bit) backend.
Differential Revision: http://llvm-reviews.chandlerc.com/D2036
llvm-svn: 193599
an MCExpr, in order to avoid writing an encoded zero value in the immediate
field.
When getUnconditionalBranchTargetOpValue is called with an MCExpr target, we
don't know what the final immediate field value should be. We shouldn't
explicitly set the immediate field to an encoded zero value as zero is encoded
with a non-zero bit pattern. This leads to bits being set that pollute the
final immediate value. The nature of the encoding is such that the polluted
bits only affect very large immediate values, explaining why this hasn't
caused problems earlier.
Fixes <rdar://problem/15155975>.
llvm-svn: 193535
This commit allows the ARM integrated assembler to parse
and assemble the code with .eabi_attribute, .cpu, and
.fpu directives.
To implement the feature, this commit moves the code from
AttrEmitter to ARMTargetStreamers, and several new test
cases related to cortex-m4, cortex-r5, and cortex-a15 are
added.
Besides, this commit also change the Subtarget->isFPOnlySP()
to Subtarget->hasD16() to match the usage of .fpu directive.
This commit changes the test cases:
* Several .eabi_attribute directives in
2010-09-29-mc-asm-header-test.ll are removed because the .fpu
directive already cover the functionality.
* In the Cortex-A15 test case, the value for
Tag_Advanced_SIMD_arch has be changed from 1 to 2,
which is more precise.
llvm-svn: 193524
When assembling, a .thumb_func directive is supposed to be applicable to the
next symbol definition, even if there are intervening directives. We were
racing ahead to try and find it, and this commit should fix the issue.
Patch by Gabor Ballabas
llvm-svn: 193403
This prevents us from silently accepting invalid instructions on (for example)
Cortex-M4 with just single-precision VFP support.
No tests for the extra Pat Requires because they're essentially assertions: the
affected code should have been lowered to libcalls before ISel.
rdar://problem/15302004
llvm-svn: 193354
The fused multiply instructions were added in VFPv4 but are still NEON
instructions, in particular they shouldn't be available on a Cortex-M4 not
matter how floaty it is.
llvm-svn: 193342
If an alias inherits directly from InstAlias then it doesn't get any default
"Requires" values, so llvm-mc will allow it even on architectures that don't
support the underlying instruction.
This tidies up the obvious VFP and NEON cases I found.
llvm-svn: 193340
POP instructions are aliased to the ARM LDM variants but have different syntax.
This caused two problems: we tried to access a non-existent operand to annotate
the '!', and the error message didn't make much sense.
With some vigorous hand-waving in the error message both problems can be
fixed.
llvm-svn: 193322
The set of circumstances where the writeback register is allowed to be in the
list of registers is rather baroque, but I think this implements them all on
the assembly parsing side.
For disassembly, we still warn about an ARM-mode LDM even if the architecture
revision is < v7 (the required architecture information isn't available). It's
a silly instruction anyway, so hopefully no-one will mind.
rdar://problem/15223374
llvm-svn: 193185
The hint instructions ("nop", "yield", etc) are mostly Thumb2-only, but have
been ported across to the v6M architecture. Fortunately, v6M seems to sit
nicely between v6 (thumb-1 only) and v6T2, so we can add a feature for it
fairly easily.
rdar://problem/15144406
llvm-svn: 192097
When MC was first added, targets could use hasRawTextSupport to keep features
working before they were added to the MC interface.
The design goal of MC is to provide an uniform api for printing assembly and
object files. Short of relaxations and other corner cases, a object file is
just another representation of the assembly.
It was never the intention that targets would keep doing things like
if (hasRawTextSupport())
Set flags in one way.
else
Set flags in another way.
When they do that they create two code paths and the object file is no longer
just another representation of the assembly. This also then requires testing
with llc -filetype=obj, which is extremelly brittle.
This patch removes some of these hacks by replacing them with smaller ones.
The ARM flag setting is trivial, so I just moved it to the constructor. For
Mips, the patch adds two temporary hack directives that allow the assembly
to represent the same things as the object file was already able to.
The hope is that the mips developers will replace the hack directives with
the same ones that gas uses and drop the -print-hack-directives flag.
I will also try to implement a target streamer interface, so that we can
move this out of the common code.
In summary, for any new work, two rules of the thumb are
* Don't use "llc -filetype=obj" in tests.
* Don't add calls to hasRawTextSupport.
llvm-svn: 192035
Changing the diagnostic message for out of range branch targets in 191686 broke the tests.
The diagnostic message for out of range branch targets was changed to be more consistent with the other diagnostics.
llvm-svn: 191691
As specified in A8.8.72/A8.8.73/A8.8.74 in the ARM ARM, all variants of the ARM LDRD instruction have the following two constraints:
LDRD<c> <Rt>, <Rt2>, ...
(a) Rt must be even-numbered and not r14
(b) Rt2 must be R(t+1)
If those two constraints are not met the result of executing the instruction will be unpredictable.
Constraint (b) was already enforced, this commit adds support for constraint (a).
Fixes rdar://14479793.
llvm-svn: 191520
LDRD<c> <Rt>, <Rt2>, <label>
LDRD<c> <Rt>, <Rt2>, [<Rn>{, #+/-<imm>}]
LDRD<c> <Rt>, <Rt2>, [<Rn>], #+/-<imm>
LDRD<c> <Rt>, <Rt2>, [<Rn>, #+/-<imm>]!
As specified in A8.8.72/A8.8.73 in the ARM ARM, the T1 encoding has a constraint which enforces that Rt != Rt2.
If this constraint is not met the result of executing the instruction will be unpredictable.
Fixes rdar://14479780.
llvm-svn: 191504
The 'Deprecated' class allows you to specify a SubtargetFeature that the
instruction is deprecated on.
The 'ComplexDeprecationPredicate' class allows you to define a custom
predicate that is called to check for deprecation.
For example:
ComplexDeprecationPredicate<"MCR">
would mean you would have to define the following function:
bool getMCRDeprecationInfo(MCInst &MI, MCSubtargetInfo &STI,
std::string &Info)
Which returns 'false' for not deprecated, and 'true' for deprecated
and store the warning message in 'Info'.
The MCTargetAsmParser constructor was chaned to take an extra argument of
the MCInstrInfo class, so out-of-tree targets will need to be changed.
llvm-svn: 190598
These were pretty straightforward instructions, with some assembly support
required for HLT.
The ARM assembler is keen to split the instruction mnemonic into a
(non-existent) 'H' instruction with the LT condition code. An exception for
HLT is needed.
HLT follows the same rules as BKPT when in IT blocks, so the special BKPT
hadling code has been adapted to handle HLT also.
Regression tests added including diagnostic tests for out of range immediates
and illegal condition codes, as well as negative tests for pre-ARMv8.
llvm-svn: 190053
Fix a few things in one swoop.
# Add some negative tests.
# Fix some formatting issues.
# Add some missing IsThumb / ARMv8
# Fix some outs / ins mistakes.
llvm-svn: 189490
The instruction to convert between floating point and fixed point representations
takes an immediate operand for the number of fractional bits of the fixed point
value. ARMARM specifies that when that number of bits is zero, the assembler
should encode floating point/integer conversion instructions.
This patch adds the necessary instruction aliases to achieve this behaviour.
llvm-svn: 189009
According to the ARM specification, "mov" is a valid mnemonic for all Thumb2 MOV encodings.
To achieve this, the patch adds one instruction alias with a special range condition to avoid collision with the Thumb1 MOV.
llvm-svn: 188901
The Thumb2 add immediate is in fact defined for SP. The manual is misleading as it points to a different section for add immediate with SP, however the encoding is the same as for add immediate with register only with the SP operand hard coded. As such add immediate with SP and add immediate with register can safely be treated as the same instruction.
All the patch does is adjust a register constraint on an instruction alias.
llvm-svn: 188676
Thumb2 literal loads use an offset encoding which allows for
negative zero. This fixes parsing and encoding so that #-0
is correctly processed. The parser represents #-0 as INT32_MIN.
llvm-svn: 188549
There are many Thumb instructions which take 12-bit immediates encoded in a special
8-byte value + 4-byte rotator form. Not all numbers are represented, and it's legal
to transform an assembly instruction to be able to encode the immediate.
For example: AND and BIC are complementary instructions; one can switch the AND
to a BIC as long as the immediate is complemented.
The intent is to switch one instruction into its complementary one when the immediate
cannot be encoded in the form requested in the original assembly and when the
complementary immediate is encodable.
The patch addresses two issues:
1. definition of t2SOImmNot immediate - it has to check that the orignal value is
not encoded naturally
2. t2AND and t2BIC instruction aliases which should use the Thumb2 SOImm operand
rather than the ARM one.
llvm-svn: 188548
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
llvm-svn: 188513
1. The offset range for Thumb1 PC relative loads is [0..1020] and not [-1024..1020]
2. Thumb2 PC relative loads may define the PC, so the restriction placed on target register is removed
3. Removes unneeded alias between "ldr.n" and t1LDRpci. ".n" is actually stripped by both tablegen
and the ASM parser, so this alias rule really does nothing
llvm-svn: 188466
In Thumb1, only one variant is supported: CPS{effect} {flags}
Thumb2 supports three:
CPS{effect}.W {flags}
CPS{effect} {flags} {mode}
CPS {mode}
Canonically, .W should be used only when ambiguity is present between encodings of different width.
The wide suffix is still accepted for the latter two forms via aliases.
llvm-svn: 188071
The long encoding for Thumb2 unconditional branches is broken.
Additionally, there is no range checking for target operands; as such
for instructions originating in assembly code, only short Thumb encodings
are generated, regardless of the bitsize needed for the offset.
Adding range checking is non trivial due to the representation of Thumb
branch instructions. There is no true difference between conditional and
unconditional branches in terms of operands and syntax - even unconditional
branches have a predicate which is expected to match that of the IT block
they are in. Yet, the encodings and the permitted size of the offset differ.
Due to this, for any mnemonic there are really 4 encodings to choose for.
The problem cannot be handled in the parser alone or by manipulating td files.
Because the parser builds first a set of match candidates and then checks them
one by one, whatever tablegen-only solution might be found will ultimately be
dependent of the parser's evaluation order. What's worse is that due to the fact
that all branches have the same syntax and the same kinds of operands, that
order is governed by the lexicographical ordering of the names of operand
classes...
To circumvent all this, any necessary disambiguation is added to the instruction
validation pass.
llvm-svn: 188067
While the .td entry is nice and all, it takes a pretty gross hack in
ARMAsmParser::ParseInstruction() because of handling of other "subs"
instructions to get it to match. Ran it by Jim Grosbach and he said it was
about what he expected to make this work given the existing code.
rdar://14214063
llvm-svn: 187530
instructions. With this patch:
1. ldr.n is recognized as mnemonic for the short encoding
2. ldr.w is recognized as menmonic for the long encoding
3. ldr will map to either short or long encodings depending on the size of the offset
llvm-svn: 186831
This adds an instruction alias to make the assembler recognize the alternate literal form: pli [PC, #+/-<imm>]
See A8.8.129 in the ARM ARM (DDI 0406C.b).
Fixes <rdar://problem/14403733>.
llvm-svn: 186459
This adds a new decoder table/namespace 'VFPV8', as these instructions have their
top 4 bits as 0b1111, while other Thumb instructions have 0b1110.
llvm-svn: 185642
Before the fix Thumb2 instructions of type "add rD, rN, #imm" (T3 encoding, see ARM ARM A8.8.4) with rD and rN both being low registers (r0-r7) were classified as having the T4 encoding.
The T4 encoding doesn't have a cc_out operand so for above instructions the operand gets erroneously removed, corrupting the token stream and leading to parse errors later in the process.
This bug prevented "add r1, r7, #0xcbcbcbcb" from being assembled correctly.
Fixes <rdar://problem/14224440>.
llvm-svn: 185575
1. it should accept only 4-byte aligned addresses
2. the maximum offset should be 1020
3. it should be encoded with the offset scaled by two bits
llvm-svn: 185528
According to ARM EHABI section 9.2, if the
__aeabi_unwind_cpp_pr1() or __aeabi_unwind_cpp_pr2() is
used, then the handler data must be emitted after the unwind
opcodes. The handler data consists of several words, and
should be terminated by zero.
In case that the .handlerdata directive is not specified by
the programmer, we should emit zero to terminate the handler
data.
llvm-svn: 185422
The mapping between SRS pseudo-instructions and SRS native instructions was incorrect, the correct mapping is:
srsfa -> srsib
srsea -> srsia
srsfd -> srsdb
srsed -> srsda
This fixes <rdar://problem/14214734>.
llvm-svn: 185155
algorithm when assigning EnumValues to the synthesized registers.
The current algorithm, LessRecord, uses the StringRef compare_numeric
function. This function compares strings, while handling embedded numbers.
For example, the R600 backend registers are sorted as follows:
T1
T1_W
T1_X
T1_XYZW
T1_Y
T1_Z
T2
T2_W
T2_X
T2_XYZW
T2_Y
T2_Z
In this example, the 'scaling factor' is dEnum/dN = 6 because T0, T1, T2
have an EnumValue offset of 6 from one another. However, in other parts
of the register bank, the scaling factors are different:
dEnum/dN = 5:
KC0_128_W
KC0_128_X
KC0_128_XYZW
KC0_128_Y
KC0_128_Z
KC0_129_W
KC0_129_X
KC0_129_XYZW
KC0_129_Y
KC0_129_Z
The diff lists do not work correctly because different kinds of registers have
different 'scaling factors'. This new algorithm, LessRecordRegister, tries to
enforce a scaling factor of 1. For example, the registers are now sorted as
follows:
T1
T2
T3
...
T0_W
T1_W
T2_W
...
T0_X
T1_X
T2_X
...
KC0_128_W
KC0_129_W
KC0_130_W
...
For the Mips and R600 I see a 19% and 6% reduction in size, respectively. I
did see a few small regressions, but the differences were on the order of a
few bytes (e.g., AArch64 was 16 bytes). I suspect there will be even
greater wins for targets with larger register files.
Patch reviewed by Jakob.
rdar://14006013
llvm-svn: 185094
Unfortunately this addresses two issues (by the time I'd disentangled the logic
it wasn't worth putting it back to half-broken):
+ Coprocessor instructions should all be predicable in Thumb mode.
+ BKPT should never be predicable.
llvm-svn: 184965
The cdp2 instruction should have the same restrictions as cdp on the
co-processor registers.
VFP instructions on v8/AArch32 share the same encoding space as cdp2.
llvm-svn: 184445
"When assembling to the ARM instruction set, the .N qualifier produces
an assembler error and the .W qualifier has no effect."
In the pre-matcher handler in the asm parser the ".w" (wide) qualifier
when in ARM mode is now discarded. And an error message is now
produced when the ".n" (narrow) qualifier is used in ARM mode.
Test cases for these were added.
rdar://14064574
llvm-svn: 184224
When using a positive offset, literal loads where encoded
as if it was negative, because:
- The sign bit was not assigned to an operand
- The addrmode_imm12 operand was not encoding the sign bit correctly
This patch also makes the assembler look at the .w/.n specifier for
loads.
llvm-svn: 184182
Negative zero is returned by the primary expression parser as INT32_MIN, so all that the method needs to do is to accept this value.
Behavior already present for Thumb2.
llvm-svn: 183734
- Don't use assert(0), or tests may pass or fail according to assertions.
- For now, The tests are marked as XFAIL for win32 hosts.
FIXME: Could we avoid XFAIL to specify triple in the RUN lines?
llvm-svn: 183728
Some ARM CPUs only support ARM mode (ancient v4 ones, for example) and some
only support Thumb mode (M-class ones currently). This makes sure such CPUs
default to the correct mode and makes the AsmParser diagnose an attempt to
switch modes incorrectly.
rdar://14024354
llvm-svn: 183710
Changes to ARM unwind opcode assembler:
* Fix multiple .save or .vsave directives. Besides, the
order is preserved now.
* For the directives which will generate multiple opcodes,
such as ".save {r0-r11}", the order of the unwind opcode
is fixed now, i.e. the registers with less encoding value
are popped first.
* Fix the $sp offset calculation. Now, we can use the
.setfp, .pad, .save, and .vsave directives at any order.
Changes to test cases:
* Add test cases to check the order of multiple opcodes
for the .save directive.
* Fix the incorrect $sp offset in the test case. The
stack pointer offset specified in the test case was
incorrect. (Changed test cases: ehabi-mc-section.ll and
ehabi-mc.ll)
* The opcode to restore $sp are slightly reordered. The
behavior are not changed, and the new output is same
as the output of GNU as. (Changed test cases:
eh-directive-pad.s and eh-directive-setfp.s)
llvm-svn: 183627
These instructions are deprecated oddities, but we still need to be able to
disassemble (and reassemble) them if and when they're encountered.
Patch by Amaury de la Vieuville.
llvm-svn: 183011
For COFF and MachO, sections semantically have relocations that apply to them.
That is not the case on ELF.
In relocatable objects (.o), a section with relocations in ELF has offsets to
another section where the relocations should be applied.
In dynamic objects and executables, relocations don't have an offset, they have
a virtual address. The section sh_info may or may not point to another section,
but that is not actually used for resolving the relocations.
This patch exposes that in the ObjectFile API. It has the following advantages:
* Most (all?) clients can handle this more efficiently. They will normally walk
all relocations, so doing an effort to iterate in a particular order doesn't
save time.
* llvm-readobj now prints relocations in the same way the native readelf does.
* probably most important, relocations that don't point to any section are now
visible. This is the case of relocations in the rela.dyn section. See the
updated relocation-executable.test for example.
llvm-svn: 182908
ARM FastISel is currently only enabled for iOS non-Thumb1, and I'm working on
enabling it for other targets. As a first step I've fixed some of the tests.
Changes to ARM FastISel tests:
- Different triples don't generate the same relocations (especially
movw/movt versus constant pool loads). Use a regex to allow either.
- Mangling is different. Use a regex to allow either.
- The reserved registers are sometimes different, so registers get
allocated in a different order. Capture the names only where this
occurs.
- Add -verify-machineinstrs to some tests where it works. It doesn't
work everywhere it should yet.
- Add -fast-isel-abort to many tests that didn't have it before.
- Split out the VarArg test from fast-isel-call.ll into its own
test. This simplifies test setup because of --check-prefix.
Patch by JF Bastien
llvm-svn: 181801
This commit implements the AsmParser for fnstart, fnend,
cantunwind, personality, handlerdata, pad, setfp, save, and
vsave directives.
This commit fixes some minor issue in the ARMELFStreamer:
* The switch back to corresponding section after the .fnend
directive.
* Emit the unwind opcode while processing .fnend directive
if there is no .handlerdata directive.
* Emit the unwind opcode to .ARM.extab while processing
.handlerdata even if .personality directive does not exist.
llvm-svn: 181603
The reference encoding is correct, but written in the wrong byte order (these are Thumb tests, while the reference is in ARM byte order).
llvm-svn: 181420
"hint" space for Thumb actually overlaps the encoding space of the CPS
instruction. In actuality, hints can be defined as CPS instructions where imod
and M bits are all nil.
Handle decoding of permitted nop-compatible hints (i.e. nop, yield, wfi, wfe,
sev) in DecodeT2CPSInstruction.
This commit adds a proper diagnostic message for Imm0_4 and updates all tests.
Patch by Mihail Popa <Mihail.Popa@arm.com>.
llvm-svn: 180617
The reference manual defines only 5 permitted values for the immediate field of the "hint" instruction:
1. nop (imm == 0)
2. yield (imm == 1)
3. wfe (imm == 2)
4. wfi (imm == 3)
5. sev (imm == 4)
Therefore, restrict the permitted values for the "hint" instruction to 0 through 4.
Patch by Mihail Popa <Mihail.Popa@arm.com>
llvm-svn: 179707
According to the ARM reference manual, constant offsets are mandatory for pre-indexed addressing modes.
The MC disassembler was not obeying this when the offset is 0.
It was producing instructions like: str r0, [r1]!.
Correct syntax is: str r0, [r1, #0]!.
This change modifies the dumping of operands so that the offset is always printed, regardless of its value, when pre-indexed addressing mode is used.
Patch by Mihail Popa <Mihail.Popa@arm.com>
llvm-svn: 179398
These instructions aren't universally available, but depend on a specific
extension to the normal ARM architecture (rather than, say, v6/v7/...) so a new
feature is appropriate.
This also enables the feature by default on A-class cores which usually have
these extensions, to avoid breaking existing code and act as a sensible
default.
llvm-svn: 179171
This fixes an issue where trying to assemlbe valid ADR instructions would cause
LLVM to hit a failed assertion.
Patch by Keith Walker.
llvm-svn: 176189
With bundle alignment, instructions all get their own MCFragments
(unless they are in a bundle-locked group). For instructions with
fixups, this is an MCDataFragment. Emitting actual data (e.g. for
.long) attempts to re-use MCDataFragments, which we don't want int
this case since it leads to fragments which exceed the bundle size.
So, don't reuse them in this case.
Also adds a test and fixes some formatting.
llvm-svn: 175316
assembler should also accept a two arg form, as the docuemntation specifies that
the first (destination) register is optional.
This patch uses TwoOperandAliasConstraint to add the two argument form.
It also fixes an 80-column formatting problem in:
test/MC/ARM/neon-bitwise-encoding
<rdar://problem/12909419> Clang rejects ARM NEON assembly instructions
llvm-svn: 175221
The parser will now accept instructions with alignment specifiers written like
vld1.8 {d16}, [r0:64]
, while also still accepting the incorrect syntax
vld1.8 {d16}, [r0, :64]
llvm-svn: 175164
and update ELF header e_flags.
Currently gathering information such as symbol,
section and data is done by collecting it in an
MCAssembler object. From MCAssembler and MCAsmLayout
objects ELFObjectWriter::WriteObject() forms and
streams out the ELF object file.
This patch just adds a few members to the MCAssember
class to store and access the e_flag settings. It
allows for runtime additions to the e_flag by
assembler directives. The standalone assembler can
get to MCAssembler from getParser().getStreamer().getAssembler().
This patch is the generic infrastructure and will be
followed by patches for ARM and Mips for their target
specific use.
Contributer: Jack Carter
llvm-svn: 173882
make into the last commit.
Also, update the test-generation script to generate an exhaustive test for
align_to_end as well, and include the generated test.
llvm-svn: 171811