__builtin_constant_p(x) is a compiler builtin that evaluates to 1 when
its argument x is a compile-time constant and to 0 otherwise. In CodeGen
it is simply lowered to the respective LLVM intrinsic. In the Analyzer
we've been trying to delegate modeling to Expr::EvaluateAsInt, which is
allowed to sometimes fail for no apparent reason.
When it fails, let's conservatively return false. Modeling it as false
is pretty much never wrong, and it is only required to return true
on a best-effort basis, which every user should expect.
Fixes VLAChecker false positives on code that tries to emulate
static asserts in C by constructing a VLA of dynamic size -1 under the
assumption that this dynamic size is actually a constant
in the sense of __builtin_constant_p.
Differential Revision: https://reviews.llvm.org/D60110
llvm-svn: 357557
This builtin has the same UI as __builtin_object_size, but has the
potential to be evaluated dynamically. It is meant to be used as a
drop-in replacement for libraries that use __builtin_object_size when
a dynamic checking mode is enabled. For instance,
__builtin_object_size fails to provide any extra checking in the
following function:
void f(size_t alloc) {
char* p = malloc(alloc);
strcpy(p, "foobar"); // expands to __builtin___strcpy_chk(p, "foobar", __builtin_object_size(p, 0))
}
This is an overflow if alloc < 7, but because LLVM can't fold the
object size intrinsic statically, it folds __builtin_object_size to
-1. With __builtin_dynamic_object_size, alloc is passed through to
__builtin___strcpy_chk.
rdar://32212419
Differential revision: https://reviews.llvm.org/D56760
llvm-svn: 352665
Introduce the boolean ento::shouldRegister##CHECKERNAME(const LangOptions &LO)
function very similarly to ento::register##CHECKERNAME. This will force every
checker to implement this function, but maybe it isn't that bad: I saw a lot of
ObjC or C++ specific checkers that should probably not register themselves based
on some LangOptions (mine too), but they do anyways.
A big benefit of this is that all registry functions now register their checker,
once it is called, registration is guaranteed.
This patch is a part of a greater effort to reinvent checker registration, more
info here: D54438#1315953
Differential Revision: https://reviews.llvm.org/D55424
llvm-svn: 352277
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
ClangCheckerRegistry is a very non-obvious, poorly documented, weird concept.
It derives from CheckerRegistry, and is placed in lib/StaticAnalyzer/Frontend,
whereas it's base is located in lib/StaticAnalyzer/Core. It was, from what I can
imagine, used to circumvent the problem that the registry functions of the
checkers are located in the clangStaticAnalyzerCheckers library, but that
library depends on clangStaticAnalyzerCore. However, clangStaticAnalyzerFrontend
depends on both of those libraries.
One can make the observation however, that CheckerRegistry has no place in Core,
it isn't used there at all! The only place where it is used is Frontend, which
is where it ultimately belongs.
This move implies that since
include/clang/StaticAnalyzer/Checkers/ClangCheckers.h only contained a single function:
class CheckerRegistry;
void registerBuiltinCheckers(CheckerRegistry ®istry);
it had to re purposed, as CheckerRegistry is no longer available to
clangStaticAnalyzerCheckers. It was renamed to BuiltinCheckerRegistration.h,
which actually describes it a lot better -- it does not contain the registration
functions for checkers, but only those generated by the tblgen files.
Differential Revision: https://reviews.llvm.org/D54436
llvm-svn: 349275
It seems the two failing tests can be simply fixed after r348037
Fix 3 cases in Analysis/builtin-functions.cpp
Delete the bad CodeGen/builtin-constant-p.c for now
llvm-svn: 348053
Kept the "indirect_builtin_constant_p" test case in test/SemaCXX/constant-expression-cxx1y.cpp
while we are investigating why the following snippet fails:
extern char extern_var;
struct { int a; } a = {__builtin_constant_p(extern_var)};
llvm-svn: 348039
This was reverted in r347656 due to me thinking it caused a miscompile of
Chromium. Turns out it was the Chromium code that was broken.
llvm-svn: 347756
This caused a miscompile in Chrome (see crbug.com/908372) that's
illustrated by this small reduction:
static bool f(int *a, int *b) {
return !__builtin_constant_p(b - a) || (!(b - a));
}
int arr[] = {1,2,3};
bool g() {
return f(arr, arr + 3);
}
$ clang -O2 -S -emit-llvm a.cc -o -
g() should return true, but after r347417 it became false for some reason.
This also reverts the follow-up commits.
r347417:
> Re-Reinstate 347294 with a fix for the failures.
>
> Don't try to emit a scalar expression for a non-scalar argument to
> __builtin_constant_p().
>
> Third time's a charm!
r347446:
> The result of is.constant() is unsigned.
r347480:
> A __builtin_constant_p() returns 0 with a function type.
r347512:
> isEvaluatable() implies a constant context.
>
> Assume that we're in a constant context if we're asking if the expression can
> be compiled into a constant initializer. This fixes the issue where a
> __builtin_constant_p() in a compound literal was diagnosed as not being
> constant, even though it's always possible to convert the builtin into a
> constant.
r347531:
> A "constexpr" is evaluated in a constant context. Make sure this is reflected
> if a __builtin_constant_p() is a part of a constexpr.
llvm-svn: 347656
This builtin is evaluated in compile time. But in the analyzer we don't yet
automagically evaluate all calls that can be evaluated in compile time.
Patch by Felix Kostenzer!
Differential Revision: https://reviews.llvm.org/D42745
llvm-svn: 324789
In most cases using
`N->getState()->getSVal(E, N->getLocationContext())`
is ugly, verbose, and also opens up more surface area for bugs if an
inconsistent location context is used.
This patch introduces a helper on an exploded node, and ensures
consistent usage of either `ExplodedNode::getSVal` or
`CheckContext::getSVal` across the codebase.
As a result, a large number of redundant lines is removed.
Differential Revision: https://reviews.llvm.org/D42155
llvm-svn: 322753
__builtin_alloca always uses __BIGGEST_ALIGNMENT__ for the alignment of
the allocation. __builtin_alloca_with_align allows the programmer to
specify the alignment of the allocation.
This fixes PR30658.
llvm-svn: 285544
This patch depends on r246688 (D12341).
The goal is to make LLVM generate different code for these functions for a target that
has cheap branches (see PR23827 for more details):
int foo();
int normal(int x, int y, int z) {
if (x != 0 && y != 0) return foo();
return 1;
}
int crazy(int x, int y) {
if (__builtin_unpredictable(x != 0 && y != 0)) return foo();
return 1;
}
Differential Revision: http://reviews.llvm.org/D12458
llvm-svn: 246699
This builtin does not actually evaluate its arguments for side effects,
so we shouldn't include them in the CFG. In the analyzer, rely on the
constant expression evaluator to get the proper semantics, at least for
now. (In the future, we could get ambitious and try to provide path-
sensitive size values.)
In theory, this does pose a problem for liveness analysis: a variable can
be used within the __builtin_object_size argument expression but not show
up as live. However, it is very unlikely that such a value would be used
to compute the object size and not used to access the object in some way.
<rdar://problem/14760817>
llvm-svn: 188679
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
The AllocaRegion did not have the superRegion (based on LocationContext)
as part of it's hash. As a consequence, the AllocaRegions from
different frames were uniqued to be the same region.
llvm-svn: 168599
Also rename 'getCurrentBlockCounter()' to 'blockCount()'.
This ripples a bunch of code simplifications; mostly aesthetic,
but makes the code a bit tighter.
llvm-svn: 162349
At this point this is largely cosmetic, but it opens the door to replace
ProgramStateRef with a smart pointer that more eagerly acts in the role
of reclaiming unused ProgramState objects.
llvm-svn: 149081
(Stmt*,LocationContext*) pairs to SVals instead of Stmt* to SVals.
This is needed to support basic IPA via inlining. Without this, we cannot tell
if a Stmt* binding is part of the current analysis scope (StackFrameContext) or
part of a parent context.
This change introduces an uglification of the use of getSVal(), and thus takes
two steps forward and one step back. There are also potential performance implications
of enlarging the Environment. Both can be addressed going forward by refactoring the
APIs and optimizing the internal representation of Environment. This patch
mainly introduces the functionality upon when we want to build upon (and clean up).
llvm-svn: 147688
We are getting name of the called function or it's declaration in a few checkers. Refactor them to use the helper function in the CheckerContext.
llvm-svn: 145576
layout. :)
Rename the 'EntoSA' directories to 'StaticAnalyzer'.
Internally we will still use the 'ento' namespace
for the analyzer engine (unless there are further
sabre rattlings...).
llvm-svn: 122514