This re-applies r268760, reverted in r268794.
Fixes http://llvm.org/PR27670
The original imp-defs assertion was way overzealous: forward all
implicit operands, except imp-defs of the new super-reg def (r268787
for GR64, but also possible for GR16->GR32), or imp-uses of the new
super-reg use.
While there, mark the source use as Undef, and add an imp-use of the
old source reg: that should cover any case of dead super-regs.
At the stage the pass runs, flags are unlikely to matter anyway;
still, let's be as correct as possible.
Also add MIR tests for the various interesting cases.
Original commit message:
Codesize is less (16) or equal (8), and we avoid partial
dependencies.
Differential Revision: http://reviews.llvm.org/D19999
llvm-svn: 268831
ABIs like NaCl uses 32-bit addresses but have 64-bit frame.
The new register class reflects those constraints when choosing a
register class for a address access.
llvm-svn: 268796
If we don't, values that aren't precisely representable in f16 could
be used as-is in a promoted f32 operation, which would produce
incorrect results.
AArch64 had the correct behavior; add a focused test.
Fixes http://llvm.org/PR26871
llvm-svn: 268700
Both Linux and kFreeBSD use glibc, so follow similiar code paths.
Add isTargetGlibc to check for this, and use it instead of isTargetLinux
in a few places.
Fixes PR22248 for kFreeBSD.
Differential Revision: http://reviews.llvm.org/D19104
llvm-svn: 268624
The result type of setcc is dependent on whether or not AVX512 is
present.
We had an X86-specific DAG-combine which assumed that the result type
should be i8 when it could be i1.
This meant that we would generate illegal setccs which LowerSETCC did
not like.
Instead, use an appropriate type and zero extend to i8.
Also, there were some scenarios where the fold should have fired but
didn't because we were overly cautious about the types. This meant that
we generated:
shrl $31, %edi
andl $1, %edi
kmovw %edi, %k0
kxnorw %k0, %k0, %k1
kshiftrw $15, %k1, %k1
kxorw %k1, %k0, %k0
kmovw %k0, %eax
instead of:
testl %edi, %edi
setns %al
This fixes PR27638.
llvm-svn: 268609
The new register classes allow to tell the machine verifier that it is
fine to use RIP for address accesses in x32 mode. Prior to that patch,
we would complain that we are using a GR64 in place of GR32, whereas it
is actually fine to use GR64 for x32 as long as the 32 high bits are 0s.
RIP has this property and is used for RIP-relative addressing.
This partially fixes http://llvm.org/PR27481.
llvm-svn: 268567
Some vector bit operations are promoted instead of having custom lowering. This patch changes the isOperationLegalOrCustom tests for vector AND/OR operations to use a new TLI helper isOperationLegalOrCustomOrPromote instead, allowing the SSE implementations to stay on the simd unit.
Differential Revision: http://reviews.llvm.org/D19805
llvm-svn: 268561
Vector bit operations are typically promoted instead of having custom lowering. This patch changes the isOperationLegalOrCustom tests for vector AND/OR operations to use isOperationLegalOrPromote instead, allowing the SSE implementations to stay on the simd unit.
Differential Revision: http://reviews.llvm.org/D19805
llvm-svn: 268504
i1 is now a legal type for X86 with AVX512.
There were some paths in X86FastISel which were not quite ready to see
an i1 value: they were not quite sure how to deal with sign/zero extends
for call arguments.
DTRT by extending to i8 for zeroext and bailing out of FastISel for
signext.
This fixes PR27591.
llvm-svn: 268470
The replaced load may have implicit-defs and those defs may be used
in the block of the original load. Make sure to update the liveness
accordingly.
This is a generalization of r267817.
llvm-svn: 268412
After the layout of the basic blocks is set, the target may be able to get rid
of unconditional branches to fallthrough blocks that the generic code does not
catch. This happens any time TargetInstrInfo::AnalyzeBranch is not able to
analyze all the branches involved in the terminators sequence, while still
understanding a few of them.
In such situation, AnalyzeBranch can directly modify the branches if it has been
instructed to do so.
This patch takes advantage of that.
llvm-svn: 268328
This operation may branch to the handler block and we do not want it
to happen anywhere within the basic block.
Moreover, by marking it "terminator and branch" the machine verifier
does not wrongly assume (because of AnalyzeBranch not knowing better)
the branch is analyzable. Indeed, the target was seeing only the
unconditional branch and not the faulting load op and thought it was
a simple unconditional block.
The machine verifier was complaining because of that and moreover,
other optimizations could have done wrong transformation!
In the process, simplify the representation of the handler block in
the faulting load op. Now, we directly reference the handler block
instead of using a label. This has the benefits of:
1. MC knows how to issue a label for a BB, so leave that to it.
2. Accessing the target BB from its label is painful, whereas it is
direct from a MBB operand.
Note: The 2 bytes offset in implicit-null-check.ll comes from the
fact the unconditional jumps are not removed anymore, as the whole
terminator sequence is not analyzable anymore.
Will fix it in a subsequence commit.
llvm-svn: 268327
For compilations with no explicit cpu specified, this exhibits
nice gains on Silvermont, with neutral performance on big cores.
Differential Revision: http://reviews.llvm.org/D19138
llvm-svn: 267809
The callseq_end node must be glued with the TLS calls, otherwise,
the generic code will miss the uses of the returned value and will
mark it dead.
Moreover, TLSCall 64-bit pseudo must not set an implicit-use on RDI,
the pseudo uses the symbol address at this point not RDI and the
lowering will do the right thing.
llvm-svn: 267797
This effectively adds back the extractelt combine removed by r262358:
the direct case can still occur (because x86_mmx is special, see
r262446), but it's the indirect case that's now superseded by the
generic combine.
llvm-svn: 267651
the prologue.
Do not use basic blocks that have EFLAGS live-in as prologue if we need
to realign the stack. Realigning the stack uses AND instruction and this
clobbers EFLAGS.
An other alternative would have been to save and restore EFLAGS around
the stack realignment code, but this is likely inefficient.
Fixes PR27531.
llvm-svn: 267634
This is part of solving PR27344:
https://llvm.org/bugs/show_bug.cgi?id=27344
CGP should undo the SimplifyCFG transform for the same reason that earlier patches have used this
same mechanism: it's possible that passes between SimplifyCFG and CGP may be able to optimize the
IR further with a select in place.
For the TLI hook default, >99% taken or not taken is chosen as the default threshold for a highly
predictable branch. Even the most limited HW branch predictors will be correct on this branch almost
all the time, so even a massive mispredict penalty perf loss would be overcome by the win from all
the times the branch was predicted correctly.
As a follow-up, we could make the default target hook less conservative by using the SchedMachineModel's
MispredictPenalty. Or we could just let targets override the default by implementing the hook with that
and other target-specific options. Note that trying to statically determine mispredict rates for
close-to-balanced profile weight data is generally impossible if the HW is sufficiently advanced. Ie,
50/50 taken/not-taken might still be 100% predictable.
Finally, note that this patch as-is will not solve PR27344 because the current __builtin_unpredictable()
branch weight default values are 4 and 64. A proposal to change that is in D19435.
Differential Revision: http://reviews.llvm.org/D19488
llvm-svn: 267572
Handle MachineBasicBlock as a memory displacement operand in the LEA optimization pass.
Differential Revision: http://reviews.llvm.org/D19409
llvm-svn: 267551
Kill-flags, which computeRegisterLiveness uses, are not reliable.
LivePhysRegs is.
Differential Revision: http://reviews.llvm.org/D19472
llvm-svn: 267495
We didn't have logic to correctly handle CFGs where there was more than
one EH-pad successor (these are novel with WinEH).
There were situations where a register was live in one exceptional
successor but not another but the code as written would only consider
the first exceptional successor it found.
This resulted in split points which were insufficiently early if an
invoke was present.
This fixes PR27501.
N.B. This removes getLandingPadSuccessor.
llvm-svn: 267412
Reused the ability to split constants of a type wider than the shuffle mask to work with masks generated from scalar constants transfered to xmm.
This fixes an issue preventing PSHUFB target shuffle masks decoding rematerialized scalar constants and also exposes the XOP VPPERM bug described in PR27472.
llvm-svn: 267343
Eliminate DITypeIdentifierMap and make DITypeRef a thin wrapper around
DIType*. It is no longer legal to refer to a DICompositeType by its
'identifier:', and DIBuilder no longer retains all types with an
'identifier:' automatically.
Aside from the bitcode upgrade, this is mainly removing logic to resolve
an MDString-based reference to an actualy DIType. The commits leading
up to this have made the implicit type map in DICompileUnit's
'retainedTypes:' field superfluous.
This does not remove DITypeRef, DIScopeRef, DINodeRef, and
DITypeRefArray, or stop using them in DI-related metadata. Although as
of this commit they aren't serving a useful purpose, there are patchces
under review to reuse them for CodeView support.
The tests in LLVM were updated with deref-typerefs.sh, which is attached
to the thread "[RFC] Lazy-loading of debug info metadata":
http://lists.llvm.org/pipermail/llvm-dev/2016-April/098318.html
llvm-svn: 267296
The relative vtable ABI (PR26723) needs PLT relocations to refer to virtual
functions defined in other DSOs. The unnamed_addr attribute means that the
function's address is not significant, so we're allowed to substitute it
with the address of a PLT entry.
Also includes a bonus feature: addends for COFF image-relative references.
Differential Revision: http://reviews.llvm.org/D17938
llvm-svn: 267211
Summary:
When generating assembly using -m16 we must explicitly mark it as
16-bit. Emit .code16 at beginning of file. Fixes wrong results when
using -fno-integrated-as.
Reviewers: dwmw2
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D19392
llvm-svn: 267152
With this change, ideally IR pass can always generate llvm.stackguard
call to get the stack guard; but for now there are still IR form stack
guard customizations around (see getIRStackGuard()). Future SSP
customization should go through LOAD_STACK_GUARD.
There is a behavior change: stack guard values are not CSEed anymore,
since we should never reuse the value in case that it has been spilled (and
corrupted). See ssp-guard-spill.ll. This also cause the change of stack
size and codegen in X86 and AArch64 test cases.
Ideally we'd like to know if the guard created in llvm.stackprotector() gets
spilled or not. If the value is spilled, discard the value and reload
stack guard; otherwise reuse the value. This can be done by teaching
register allocator to know how to rematerialize LOAD_STACK_GUARD and
force a rematerialization (which seems hard), or check for spilling in
expandPostRAPseudo. It only makes sense when the stack guard is a global
variable, which requires more instructions to load. Anyway, this seems to go out
of the scope of the current patch.
llvm-svn: 266806
Using VPERMQ/VPERMPD allows memory folding of the (repeated) input where VINSERTI128/VINSERTF128 can not.
Differential Revision: http://reviews.llvm.org/D19228
llvm-svn: 266728
Summary:
The `"patchable-function"` attribute can be used by an LLVM client to
influence LLVM's code generation in ways that makes the generated code
easily patchable at runtime (for instance, to redirect control).
Right now only one patchability scheme is supported,
`"prologue-short-redirect"`, but this can be expanded in the future.
Reviewers: joker.eph, rnk, echristo, dberris
Subscribers: joker.eph, echristo, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D19046
llvm-svn: 266715
Because HoistSpillHelper::hoistAllSpills is called in postOptimization, before the
patch we didn't want LiveRangeEdit::eliminateDeadDefs to call splitSeparateComponents
and generate unassigned new vregs. However, skipping splitSeparateComponents will make
verify-machineinstrs unhappy, so I remove the early return, and use
HoistSpillHelper::LRE_DidCloneVirtReg to assign physreg/stackslot for those new vregs.
In addition, some code reorganization to make class HoistSpillHelper privately inheriting
from LiveRangeEdit::Delegate possible. This is to be consistent with class RAGreedy and
class RegisterCoalescer.
Differential Revision: http://reviews.llvm.org/D19142
llvm-svn: 266489
After r245976, LLVM will skip the last bit test case if knows it will always be
true. However, we would still erroneously update PHI nodes with incoming values
from the MBB that would perform the final bit test, causing -verify-machineinstrs
to fail.
llvm-svn: 266479
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.
Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.
Motivation
----------
Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.
We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.
Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.
http://reviews.llvm.org/D19034
<rdar://problem/25256815>
llvm-svn: 266446
It is very likely that the swiftself parameter is alive throughout most
functions function so putting it into a callee save register should
avoid spills for the callers with only a minimum amount of extra spills
in the callees.
Currently the generated code is correct but unnecessarily spills and
reloads arguments passed in callee save registers, I will address this
in upcoming patches.
This also adds a missing check that for tail calls the preserved value
of the caller must be the same as the callees parameter.
Differential Revision: http://reviews.llvm.org/D18902
llvm-svn: 266252
two fixes with one about error verify-regalloc reported, and
another about live range update of phi after rematerialization.
r265547:
Replace analyzeSiblingValues with new algorithm to fix its compile
time issue. The patch is to solve PR17409 and its duplicates.
analyzeSiblingValues is a N x N complexity algorithm where N is
the number of siblings generated by reg splitting. Although it
causes siginificant compile time issue when N is large, it is also
important for performance since it removes redundent spills and
enables rematerialization.
To solve the compile time issue, the patch removes analyzeSiblingValues
and replaces it with lower cost alternatives containing two parts. The
first part creates a new spill hoisting method in postOptimization of
register allocation. It does spill hoisting at once after all the spills
are generated instead of inside every instance of selectOrSplit. The
second part queries the define expr of the original register for
rematerializaiton and keep it always available during register allocation
even if it is already dead. It deletes those dead instructions only in
postOptimization. With the two parts in the patch, it can remove
analyzeSiblingValues without sacrificing performance.
Patches on top of r265547:
r265610 "Fix the compare-clang diff error introduced by r265547."
r265639 "Fix the sanitizer bootstrap error in r265547."
r265657 "InlineSpiller.cpp: Escap \@ in r265547. [-Wdocumentation]"
Differential Revision: http://reviews.llvm.org/D15302
Differential Revision: http://reviews.llvm.org/D18934
Differential Revision: http://reviews.llvm.org/D18935
Differential Revision: http://reviews.llvm.org/D18936
llvm-svn: 266162
This is a resubmittion of 263158 change.
This patch fixes the problem which occurs when loop-vectorize tries to use @llvm.masked.load/store intrinsic for a non-default addrspace pointer. It fails with "Calling a function with a bad signature!" assertion in CallInst constructor because it tries to pass a non-default addrspace pointer to the pointer argument which has default addrspace.
The fix is to add pointer type as another overloaded type to @llvm.masked.load/store intrinsics.
Reviewed By: reames
Differential Revision: http://reviews.llvm.org/D17270
llvm-svn: 266086
Add StackProtector to SafeStack. This adds limited protection against
data corruption in the caller frame. Current implementation treats
all stack protector levels as -fstack-protector-all.
llvm-svn: 266004
xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B)) was only being combined at the AfterLegalizeTypes stage, this patch permits the combine to occur anytime before then as well.
The main aim with this to improve the ability to recognise bitmasks that can be converted to shuffles.
I had to modify a number of AVX512 mask tests as the basic bitcast to/from scalar pattern was being stripped out, preventing testing of the mmask bitops. By replacing the bitcasts with loads we can get almost the same result.
Differential Revision: http://reviews.llvm.org/D18944
llvm-svn: 265998
Extend the existing lowering of vXi8 multiplies to support v64i8 on avx512bw targets.
I added the Lower512IntArith helper function to help with this - not sure how often this could be used in the future, but it seemed better than putting all that logic inside LowerMUL.
Differential Revision: http://reviews.llvm.org/D18937
llvm-svn: 265902
Summary:
After we make the adjustment, we can assume that for local allocas, but
not for stack parameters, the return address, or any other fixed stack
object (which has a negative offset and therefore lies prior to the
adjusted SP).
Fixes PR26662.
Reviewers: hfinkel, qcolombet, rnk
Subscribers: rnk, llvm-commits
Differential Revision: http://reviews.llvm.org/D18471
llvm-svn: 265886
This patch adds support for decoding XOP VPPERM instruction when it represents a basic shuffle.
The mask decoding required the existing MCInstrLowering code to be updated to support binary shuffles - the implementation now matches what is done in X86InstrComments.cpp.
Differential Revision: http://reviews.llvm.org/D18441
llvm-svn: 265874
It caused PR27275: "ARM: Bad machine code: Using an undefined physical register"
Also reverting the following commits that were landed on top:
r265610 "Fix the compare-clang diff error introduced by r265547."
r265639 "Fix the sanitizer bootstrap error in r265547."
r265657 "InlineSpiller.cpp: Escap \@ in r265547. [-Wdocumentation]"
llvm-svn: 265790
It seems that llc cannot be called used in assembler tests so test that
checks asm for particular target needs to be moved to codegen.
llvm-svn: 265770
Summary:
EHPad BB are not entered the classic way and therefor do not need to be placed after their predecessors. This patch make sure EHPad BB are not chosen amongst successors to form chains, and are selected as last resort when selecting the best candidate.
EHPad are scheduled in reverse probability order in order to have them flow into each others naturally.
Reviewers: chandlerc, majnemer, rafael, MatzeB, escha, silvas
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D17625
llvm-svn: 265726
Re-apply r265450 which caused PR27245 and was reverted in r265559
because of a wrong generalization: the fetch_and_add->add_and_fetch
combine only works in specific, but pretty common, cases:
(icmp slt x, 0) -> (icmp sle (add x, 1), 0)
(icmp sge x, 0) -> (icmp sgt (add x, 1), 0)
(icmp sle x, 0) -> (icmp slt (sub x, 1), 0)
(icmp sgt x, 0) -> (icmp sge (sub x, 1), 0)
Original Message:
We only generate LOCKed versions of add/sub when the result is unused.
It often happens that the result is used, but only by a comparison. We
can optimize those out by reusing EFLAGS, which lets us use the proper
instructions, instead of having to fallback to LXADD.
Instead of doing this as an MI peephole (as we do for the other
non-LOCKed (really, non-MR) forms), do it in ISel. It becomes quite
tricky later.
This also makes it eventually possible to stop expanding and/or/xor
if the only user is an icmp (also see D18141).
This uses the LOCK ISD opcodes added by r262244.
Differential Revision: http://reviews.llvm.org/D17633
llvm-svn: 265636
Third time's the charm? The previous attempt (r265345) caused ASan test
failures on X86, as broken CFI caused stack traces to not work.
This version of the patch makes sure not to merge with stack adjustments
that have CFI, and to not add merged instructions' offests to the CFI
about to be generated.
This is already covered by the lit tests; I just got the expectations
wrong previously.
llvm-svn: 265623
when DenseMap growed and moved memory. I verified it fixed the bootstrap
problem on x86_64-linux-gnu but I cannot verify whether it fixes
the bootstrap error on clang-ppc64be-linux. I will watch the build-bot
result closely.
Replace analyzeSiblingValues with new algorithm to fix its compile
time issue. The patch is to solve PR17409 and its duplicates.
analyzeSiblingValues is a N x N complexity algorithm where N is
the number of siblings generated by reg splitting. Although it
causes siginificant compile time issue when N is large, it is also
important for performance since it removes redundent spills and
enables rematerialization.
To solve the compile time issue, the patch removes analyzeSiblingValues
and replaces it with lower cost alternatives containing two parts. The
first part creates a new spill hoisting method in postOptimization of
register allocation. It does spill hoisting at once after all the spills
are generated instead of inside every instance of selectOrSplit. The
second part queries the define expr of the original register for
rematerializaiton and keep it always available during register allocation
even if it is already dead. It deletes those dead instructions only in
postOptimization. With the two parts in the patch, it can remove
analyzeSiblingValues without sacrificing performance.
Differential Revision: http://reviews.llvm.org/D15302
llvm-svn: 265547
While preserving the return value for @llvm.experimental.deoptimize at
the IR level is useful during mid-level optimization, doing so at the
machine instruction level requires generating some extra code and a
return that is non-ideal. This change has LLVM lower
```
%val = call @llvm.experimental.deoptimize
ret %val
```
to effectively
```
call @__llvm_deoptimize()
unreachable
```
instead.
llvm-svn: 265502
Bionic has a defined thread-local location for the stack protector
cookie. Emit a direct load instead of going through __stack_chk_guard.
llvm-svn: 265481
We only generate LOCKed versions of add/sub when the result is unused.
It often happens that the result is used, but only by a comparison. We
can optimize those out by reusing EFLAGS, which lets us use the proper
instructions, instead of having to fallback to LXADD.
Instead of doing this as an MI peephole (as we do for the other
non-LOCKed (really, non-MR) forms), do it in ISel. It becomes quite
tricky later.
This also makes it eventually possible to stop expanding and/or/xor
if the only user is an icmp (also see D18141).
This uses the LOCK ISD opcodes added by r262244.
Differential Revision: http://reviews.llvm.org/D17633
llvm-svn: 265450
utils/update_test_checks.py was improved with:
http://reviews.llvm.org/rL265414
to include the first line of the function (expected to be
a comment line). This ensures that nothing bad has happened
before the first actual line of checked asm. It also matches
the existing behavior of the old script.
llvm-svn: 265416
Presently, CodeGenPrepare deletes all nearly empty (only phi and branch)
basic blocks. This pass can delete loop preheaders which frequently creates
critical edges. A preheader can be a convenient place to spill registers to
the stack. If the entrance to a loop body is a critical edge, then spills
may occur in the loop body rather than immediately before it. This patch
protects loop preheaders from deletion in CodeGenPrepare even if they are
nearly empty.
Since the patch alters the CFG, it affects a large number of test cases.
In most cases, the changes are merely cosmetic (basic blocks have different
names or instruction orders change slightly). I am somewhat concerned about
the test/CodeGen/Mips/brdelayslot.ll test case. If the loop preheader is not
deleted, then the MIPS backend does not take advantage of a branch delay
slot. Consequently, I would like some close review by a MIPS expert.
The patch also partially subsumes D16893 from George Burgess IV. George
correctly notes that CodeGenPrepare does not actually preserve the dominator
tree. I think the dominator tree was usually not valid when CodeGenPrepare
ran, but I am using LoopInfo to mark preheaders, so the dominator tree is
now always valid before CodeGenPrepare.
Author: Tom Jablin (tjablin)
Reviewers: hfinkel george.burgess.iv vkalintiris dsanders kbarton cycheng
http://reviews.llvm.org/D16984
llvm-svn: 265397
Summary:
I encountered this issue when constant folding during inlining tried to
fold away a bitcast of a double to an x86_mmx, which is not an integral
type. The test case exposes the same issue with a smaller code snippet
during early CSE.
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D18528
llvm-svn: 265367
The original commit miscompiled things on 32-bit Windows, e.g. a Clang
boostrap. It turns out that mergeSPUpdates() was a bit too generous in
what it interpreted as a stack adjustment, causing the following code:
addl $12, %esp
leal -4(%ebp), %esp
To be "optimized" into simply:
addl $8, %esp
This commit tightens up mergeSPUpdates() and includes a new test
(test14 in movtopush.ll) for this situation.
llvm-svn: 265345
Adds some dllexport tests to verify that:
- Variables in bss are exported appropriately
- Non-dllexport symbols aliased to dllexport symbols are not exported
- Symbols declared as dllexport but are not defined are not exported
We plan to enable dllimport/dllexport support for the PS4, and these
additional tests are for points we noticed in our internal testing.
Patch by Warren Ristow!
Differential Revision: http://reviews.llvm.org/D18682
llvm-svn: 265333
time issue. The patch is to solve PR17409 and its duplicates.
analyzeSiblingValues is a N x N complexity algorithm where N is
the number of siblings generated by reg splitting. Although it
causes siginificant compile time issue when N is large, it is also
important for performance since it removes redundent spills and
enables rematerialization.
To solve the compile time issue, the patch removes analyzeSiblingValues
and replaces it with lower cost alternatives containing two parts. The
first part creates a new spill hoisting method in postOptimization of
register allocation. It does spill hoisting at once after all the spills
are generated instead of inside every instance of selectOrSplit. The
second part queries the define expr of the original register for
rematerializaiton and keep it always available during register allocation
even if it is already dead. It deletes those dead instructions only in
postOptimization. With the two parts in the patch, it can remove
analyzeSiblingValues without sacrificing performance.
Differential Revision: http://reviews.llvm.org/D15302
llvm-svn: 265309
Implemented truncstore for KNL and skylake-avx512.
Covered vectors from v2i1 to v64i1. We save the value in bits (not in bytes) - v32i1 is saved in 4 bytes.
Differential Revision: http://reviews.llvm.org/D18740
llvm-svn: 265283
Was there really no other way to splat a byte in SSE2?
punpcklbw {{.*#+}} xmm0 = xmm0[0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7]
pshuflw {{.*#+}} xmm0 = xmm0[0,0,0,0,4,5,6,7]
pshufd {{.*#+}} xmm0 = xmm0[0,0,1,1]
llvm-svn: 265172
Note however that this is identical to the existing SSE2 run.
What we really want is yet another run for an SSE2 machine that
also has fast unaligned 16-byte accesses.
llvm-svn: 265167
Follow-up to http://reviews.llvm.org/D18566 and http://reviews.llvm.org/D18676 -
where we noticed that an intermediate splat was being generated for memsets of
non-zero chars.
That was because we told getMemsetStores() to use a 32-bit vector element type,
and it happily obliged by producing that constant using an integer multiply.
The 16-byte test that was added in D18566 is now equivalent for AVX1 and AVX2
(no splats, just a vector load), but we have PR27141 to track that splat difference.
Note that the SSE1 path is not changed in this patch. That can be a follow-up.
This patch should resolve PR27100.
llvm-svn: 265161
Follow-up to D18566 - where we noticed that an intermediate splat was being
generated for memsets of non-zero chars.
That was because we told getMemsetStores() to use a 32-bit vector element type,
and it happily obliged by producing that constant using an integer multiply.
The tests that were added in the last patch are now equivalent for AVX1 and AVX2
(no splats, just a vector load), but we have PR27141 to track that splat difference.
In the new tests, the splat via shuffling looks ok to me, but there might be some
room for improvement depending on uarch there.
Note that the SSE1/2 paths are not changed in this patch. That can be a follow-up.
This patch should resolve PR27100.
Differential Revision: http://reviews.llvm.org/D18676
llvm-svn: 265148
This changes some dllexport tests, to verify that some symbols that
should not be exported are not, in a way that improves the robustness
of CHECK-SAME interaction with CHECK-NOT.
We plan to enable dllimport/dllexport support for the PS4, and these
changes are for points we noticed in our internal testing.
Patch by Warren Ristow!
llvm-svn: 265106
Re-enable an assertion enabled by Justin Lebar in rL265092. rL265092
was breaking test/CodeGen/X86/deopt-intrinsic.ll because webkit_jscc
does not like non-i64 return types. Change the test case to not do
that.
llvm-svn: 265099
This mostly cosmetic patch moves the DebugEmissionKind enum from DIBuilder
into DICompileUnit. DIBuilder is not the right place for this enum to live
in — a metadata consumer should not have to include DIBuilder.h.
I also added a Verifier check that checks that the emission kind of a
DICompileUnit is actually legal.
http://reviews.llvm.org/D18612
<rdar://problem/25427165>
llvm-svn: 265077
We don't really support non-constant shuffle masks, but these tests are for cases where BUILD_VECTOR is made up from vector extracts (as well as undef/zero scalars).
llvm-svn: 265045
The test case was defining and using a function 'notExported()', but
the FileCheck checks were checking for the name 'not_exported'. This
changes the test to use 'notExported' across the board. Also, the test
defined a function 'not_defined()', but doesn't have any checks related
to it. For consistency, this name is changed to 'notDefined'. A later
commit will add checks for 'notDefined'.
Patch by Warren Ristow!
llvm-svn: 264984
The size savings are significant, and from what I can tell, both ICC and GCC do this.
Differential Revision: http://reviews.llvm.org/D18573
llvm-svn: 264966
Fix for issue introduced D17297, where we were breaking early from the loop detecting consecutive loads which could leave us thinking a consecutive load with zeros was possible.
llvm-svn: 264922
XOP's VPPERM has some great 'permute operations' that it can do as well as part of shuffling the bytes of a 128-bit vector - in this case we use it to perform BITREVERSE in a single instruction.
llvm-svn: 264870
We are currently doing a REALLY bad job of packing results of vector comparisons into the legalized <X x i1> result equivalents - a mixture of PACKSS/PMOVMSKB would be much better here.
llvm-svn: 264867