Only currently done if the later store is writing to a power of 2 address or
has the same alignment as the earlier store as then its likely to not break up
large stores into smaller ones
Fixes <rdar://problem/10140300>
llvm-svn: 143630
We've been hitting asserts in this code due to the many supported
combintions of modes (iv-rewrite/no-iv-rewrite) and IV types. This
second rewrite of the code attempts to deal with these cases systematically.
llvm-svn: 143546
it is separating the directory part from the basename of the FileName. Noticed
that this:
.file 1 "dir/foo"
when assembled got the two parts switched. Using the Mac OS X dwarfdump tool
it can be seen easily:
% dwarfdump -a a.out
include_directories[ 1] = 'foo'
Dir Mod Time File Len File Name
---- ---------- ---------- ---------------------------
file_names[ 1] 1 0x00000000 0x00000000 dir
...
Which should be:
...
include_directories[ 1] = 'dir'
Dir Mod Time File Len File Name
---- ---------- ---------- ---------------------------
file_names[ 1] 1 0x00000000 0x00000000 foo
llvm-svn: 143521
with the given predicate, it matches any condition and returns the
predicate - d'oh! Original commit message:
The expression icmp eq (select (icmp eq x, 0), 1, x), 0 folds to false.
Spotted by my super-optimizer in 186.crafty and 450.soplex. We really
need a proper infrastructure for handling generalizations of this kind
of thing (which occur a lot), however this case is so simple that I decided
to go ahead and implement it directly.
llvm-svn: 143318
On x86: (shl V, 1) -> add V,V
Hardware support for vector-shift is sparse and in many cases we scalarize the
result. Additionally, on sandybridge padd is faster than shl.
llvm-svn: 143311
Spotted by my super-optimizer in 186.crafty and 450.soplex. We really
need a proper infrastructure for handling generalizations of this kind
of thing (which occur a lot), however this case is so simple that I decided
to go ahead and implement it directly.
llvm-svn: 143214
fixes: Use a separate register, instead of SP, as the
calling-convention resource, to avoid spurious conflicts with
actual uses of SP. Also, fix unscheduling of calling sequences,
which can be triggered by pseudo-two-address dependencies.
llvm-svn: 143206
Outside an IT block, "add r3, #2" should select a 32-bit wide encoding
rather than generating an error indicating the 16-bit encoding is only
legal in an IT block (outside, the 'S' suffic is required for the 16-bit
encoding).
rdar://10348481
llvm-svn: 143201
Don't assume APInt::getRawData() would hold target-aware endianness nor host-compliant endianness. rawdata[0] holds most lower i64, even on big endian host.
FIXME: Add a testcase for big endian target.
FIXME: Ditto on CompileUnit::addConstantFPValue() ?
llvm-svn: 143194
it fixes the dragonegg self-host (it looks like gcc is miscompiled).
Original commit messages:
Eliminate LegalizeOps' LegalizedNodes map and have it just call RAUW
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
Delete #if 0 code accidentally left in.
llvm-svn: 143188
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
llvm-svn: 143177
using BinaryOperator (which only works for instructions) when it should have
been a cast to OverflowingBinaryOperator (which also works for constants).
While there, correct a few other dubious looking uses of BinaryOperator.
Thanks to Chad Rosier for the testcase. Original commit message:
My super-optimizer noticed that we weren't folding this expression to
true: (x *nsw x) sgt 0, where x = (y | 1). This occurs in 464.h264ref.
llvm-svn: 143125
not depend on In32BitMode. Use the sysexitq mnemonic for the version with the
REX.W prefix and only allow it only In64BitMode. rdar://9738584
llvm-svn: 143112
We were parsing label references to the i12 encoding, which isn't right.
They need to go to the pci variant instead.
More of rdar://10348687
llvm-svn: 143068
MORESTACK_RET_RESTORE_R10; which are lowered to a RET and a RET
followed by a MOV respectively. Having a fake instruction prevents
the verifier from seeing a MachineBasicBlock end with a
non-terminator (MOV). It also prevents the rather eccentric case of a
MachineBasicBlock ending with RET but having successors nevertheless.
Patch by Sanjoy Das.
llvm-svn: 143062
LLVM 2.9. My understanding is that we plan to maintain compatibility with 2.9
until the 3.1 release. At that time we can generate new test cases using LLVM
3.0.
llvm-svn: 142958
bots. Original commit messages:
- Reapply r142781 with fix. Original message:
Enhance SCEV's brute force loop analysis to handle multiple PHI nodes in the
loop header when computing the trip count.
With this, we now constant evaluate:
struct ListNode { const struct ListNode *next; int i; };
static const struct ListNode node1 = {0, 1};
static const struct ListNode node2 = {&node1, 2};
static const struct ListNode node3 = {&node2, 3};
int test() {
int sum = 0;
for (const struct ListNode *n = &node3; n != 0; n = n->next)
sum += n->i;
return sum;
}
- Now that we look at all the header PHIs, we need to consider all the header PHIs
when deciding that the loop has stopped evolving. Fixes miscompile in the gcc
torture testsuite!
llvm-svn: 142919
classifying many edges as exiting which were in fact not. These mainly
formed edges into sub-loops. It was also not correctly classifying all
returning edges out of loops as leaving the loop. With this match most
of the loop heuristics are more rational.
Several serious regressions on loop-intesive benchmarks like perlbench's
loop tests when built with -enable-block-placement are fixed by these
updated heuristics. Unfortunately they in turn uncover some other
regressions. There are still several improvemenst that should be made to
loop heuristics including trip-count, and early back-edge management.
llvm-svn: 142917
the dragonegg and llvm-gcc self-host buildbots. Original commit
messages:
- Reapply r142781 with fix. Original message:
Enhance SCEV's brute force loop analysis to handle multiple PHI nodes in the
loop header when computing the trip count.
With this, we now constant evaluate:
struct ListNode { const struct ListNode *next; int i; };
static const struct ListNode node1 = {0, 1};
static const struct ListNode node2 = {&node1, 2};
static const struct ListNode node3 = {&node2, 3};
int test() {
int sum = 0;
for (const struct ListNode *n = &node3; n != 0; n = n->next)
sum += n->i;
return sum;
}
- Now that we look at all the header PHIs, we need to consider all the header PHIs
when deciding that the loop has stopped evolving. Fixes miscompile in the gcc
torture testsuite!
llvm-svn: 142916
introduce no-return or unreachable heuristics.
The return heuristics from the Ball and Larus paper don't work well in
practice as they pessimize early return paths. The only good hitrate
return heuristics are those for:
- NULL return
- Constant return
- negative integer return
Only the last of these three can possibly require significant code for
the returning block, and even the last is fairly rare and usually also
a constant. As a consequence, even for the cold return paths, there is
little code on that return path, and so little code density to be gained
by sinking it. The places where sinking these blocks is valuable (inner
loops) will already be weighted appropriately as the edge is a loop-exit
branch.
All of this aside, early returns are nearly as common as all three of
these return categories, and should actually be predicted as taken!
Rather than muddy the waters of the static predictions, just remain
silent on returns and let the CFG itself dictate any layout or other
issues.
However, the return heuristic was flagging one very important case:
unreachable. Unfortunately it still gave a 1/4 chance of the
branch-to-unreachable occuring. It also didn't do a rigorous job of
finding those blocks which post-dominate an unreachable block.
This patch builds a more powerful analysis that should flag all branches
to blocks known to then reach unreachable. It also has better worst-case
runtime complexity by not looping through successors for each block. The
previous code would perform an N^2 walk in the event of a single entry
block branching to N successors with a switch where each successor falls
through to the next and they finally fall through to a return.
Test case added for noreturn heuristics. Also doxygen comments improved
along the way.
llvm-svn: 142793
instructions.
This doesn't introduce any optimizations we weren't doing before (except
potentially due to pass ordering issues), now passes will eliminate them sooner
as part of their own cleanups.
llvm-svn: 142787
to bring it under direct test instead of merely indirectly testing it in
the BlockFrequencyInfo pass.
The next step is to start adding tests for the various heuristics
employed, and to start fixing those heuristics once they're under test.
llvm-svn: 142778
discussions with Andy. Fundamentally, the previous algorithm is both
counter productive on several fronts and prioritizing things which
aren't necessarily the most important: static branch prediction.
The new algorithm uses the existing loop CFG structure information to
walk through the CFG itself to layout blocks. It coalesces adjacent
blocks within the loop where the CFG allows based on the most likely
path taken. Finally, it topologically orders the block chains that have
been formed. This allows it to choose a (mostly) topologically valid
ordering which still priorizes fallthrough within the structural
constraints.
As a final twist in the algorithm, it does violate the CFG when it
discovers a "hot" edge, that is an edge that is more than 4x hotter than
the competing edges in the CFG. These are forcibly merged into
a fallthrough chain.
Future transformations that need te be added are rotation of loop exit
conditions to be fallthrough, and better isolation of cold block chains.
I'm also planning on adding statistics to model how well the algorithm
does at laying out blocks based on the probabilities it receives.
The old tests mostly still pass, and I have some new tests to add, but
the nested loops are still behaving very strangely. This almost seems
like working-as-intended as it rotated the exit branch to be
fallthrough, but I'm not convinced this is actually the best layout. It
is well supported by the probabilities for loops we currently get, but
those are pretty broken for nested loops, so this may change later.
llvm-svn: 142743
element types, even though the element extraction code does. It is surprising
that this bug has been here for so long. Fixes <rdar://problem/10318778>.
llvm-svn: 142740
able to constant fold load instructions where the argument is a constant.
Second, we should be able to watch multiple PHI nodes through the loop; this
patch only supports PHIs in loop headers, more can be done here.
With this patch, we now constant evaluate:
static const int arr[] = {1, 2, 3, 4, 5};
int test() {
int sum = 0;
for (int i = 0; i < 5; ++i) sum += arr[i];
return sum;
}
llvm-svn: 142731
Next step in the ongoing saga of NEON load/store assmebly parsing. Handle
VLD1 instructions that take a two-register register list.
Adjust the instruction definitions to only have the single encoded register
as an operand. The super-register from the pseudo is kept as an implicit def,
so passes which come after pseudo-expansion still know that the instruction
defines the other subregs.
llvm-svn: 142670
ZExtPromotedInteger and SExtPromotedInteger based on the operation we legalize.
SetCC return type needs to be legalized via PromoteTargetBoolean.
llvm-svn: 142660
it's a bit more plausible to use this instead of CodePlacementOpt. The
code for this was shamelessly stolen from CodePlacementOpt, and then
trimmed down a bit. There doesn't seem to be much utility in returning
true/false from this pass as we may or may not have rewritten all of the
blocks. Also, the statistic of counting how many loops were aligned
doesn't seem terribly important so I removed it. If folks would like it
to be included, I'm happy to add it back.
This was probably the most egregious of the missing features, and now
I'm going to start gathering some performance numbers and looking at
specific loop structures that have different layout between the two.
Test is updated to include both basic loop alignment and nested loop
alignment.
llvm-svn: 142645
canonical example I used when developing it, and is one of the primary
motivating real-world use cases for __builtin_expect (when burried under
a macro).
I'm working on more test cases here, but I'm trying to make sure both
that the pass is doing the right thing with the test cases and that they
aren't too brittle to changes elsewhere in the code generation pipeline.
Feedback and/or suggestions on how to test this are very welcome.
Especially feedback on whether testing the block comments is a good
strategy; I couldn't find any good examples to steal from but all the
other ideas I had were a lot uglier or more fragile.
llvm-svn: 142644