Commit Graph

188 Commits

Author SHA1 Message Date
Johannes Doerfert 2b92a0e4ee Handle llvm.assume inside the SCoP
The assumption attached to an llvm.assume in the SCoP needs to be
  combined with the domain of the surrounding statement but can
  nevertheless be used to refine the context.

  This fixes the problems mentioned in PR27067.

llvm-svn: 269060
2016-05-10 14:00:57 +00:00
Johannes Doerfert 56b377644a Expose interpretAsUnsigned in the SCEVAffinator [NFC]
This exposes the functionality to interpret a SCEV, or better the
  piece-wise function created from the SCEV, as an unsigned value
  instead of a signed one.

llvm-svn: 269044
2016-05-10 11:45:46 +00:00
Michael Kruse bc150127ae Rename Conjuncts -> Disjunctions. NFC.
The check for complexity compares the number of polyhedra in a set,
which are combined by disjunctions (union, "OR"),
not conjunctions (intersection, "AND").

llvm-svn: 268223
2016-05-02 12:25:18 +00:00
Michael Kruse 2d3ff2a5ba Typo: isToComplex -> isTooComplex. NFC.
llvm-svn: 268220
2016-05-02 10:44:20 +00:00
Johannes Doerfert 172dd8b923 Allow unsigned divisions
After zero-extend operations and unsigned comparisons we now allow
  unsigned divisions. The handling is basically the same as for signed
  division, except the interpretation of the operands. As the divisor
  has to be constant in both cases we can simply interpret it as an
  unsigned value without additional complexity in the representation.
  For the dividend we could choose from the different representation
  schemes introduced for zero-extend operations but for now we will
  simply use an assumption.

llvm-svn: 268032
2016-04-29 11:53:35 +00:00
Johannes Doerfert ba9725ff41 Refactor SCEVAffinator [NFC]
llvm-svn: 268031
2016-04-29 11:52:30 +00:00
Johannes Doerfert 3e48ee2ab9 [FIX] Unsigned comparisons change invalid domain
It does not suffice to take a global assumptions for unsigned comparisons but
  we also need to adjust the invalid domain of the statements guarded by such
  an assumption. To this end we allow to specialize the getPwAff call now in
  order to indicate unsigned interpretation.

llvm-svn: 268025
2016-04-29 10:44:41 +00:00
Johannes Doerfert bfaa63a82e [FIX] Prevent division/modulo by zero in parameters
When we materialize parameter SCEVs we did so without considering the
  side effects they might have, e.g., both division and modulo are
  undefined if the right hand side is zero. This is a problem because we
  potentially extended the domain under which we evaluate parameters,
  thus we might have introduced such undefined behaviour. To prevent
  that from happening we will now guard divisions and modulo operations
  in the parameters with a compare and select.

llvm-svn: 268023
2016-04-29 10:36:58 +00:00
Johannes Doerfert 323ab3975b [FIX] Adjust assumption space for zext instructions
llvm-svn: 267552
2016-04-26 12:44:01 +00:00
Johannes Doerfert 625bb1fc10 Do not add but record signed-unsigned assumptions
llvm-svn: 267528
2016-04-26 09:16:36 +00:00
Johannes Doerfert 9cc8340fea Extract some constant factors from "SCEVAddExprs"
Additive expressions can have constant factors too that we can extract
  and thereby simplify the internal representation. For now we do
  compute the gcd of all constant factors but only extract the same
  (possibly negated) factor if there is one.

llvm-svn: 267445
2016-04-25 19:09:10 +00:00
Johannes Doerfert c3596284c3 Model zext-extend instructions
A zero-extended value can be interpreted as a piecewise defined signed
  value. If the value was non-negative it stays the same, otherwise it
  is the sum of the original value and 2^n where n is the bit-width of
  the original (or operand) type. Examples:
    zext i8 127 to i32 -> { [127] }
    zext i8  -1 to i32 -> { [256 + (-1)] } = { [255] }
    zext i8  %v to i32 -> [v] -> { [v] | v >= 0; [256 + v] | v < 0 }

  However, LLVM/Scalar Evolution uses zero-extend (potentially lead by a
  truncate) to represent some forms of modulo computation. The left-hand side
  of the condition in the code below would result in the SCEV
  "zext i1 <false, +, true>for.body" which is just another description
  of the C expression "i & 1 != 0" or, equivalently, "i % 2 != 0".

    for (i = 0; i < N; i++)
      if (i & 1 != 0 /* == i % 2 */)
        /* do something */

  If we do not make the modulo explicit but only use the mechanism described
  above we will get the very restrictive assumption "N < 3", because for all
  values of N >= 3 the SCEVAddRecExpr operand of the zero-extend would wrap.
  Alternatively, we can make the modulo in the operand explicit in the
  resulting piecewise function and thereby avoid the assumption on N. For the
  example this would result in the following piecewise affine function:
  { [i0] -> [(1)] : 2*floor((-1 + i0)/2) = -1 + i0;
    [i0] -> [(0)] : 2*floor((i0)/2) = i0 }
  To this end we can first determine if the (immediate) operand of the
  zero-extend can wrap and, in case it might, we will use explicit modulo
  semantic to compute the result instead of emitting non-wrapping assumptions.

  Note that operands with large bit-widths are less likely to be negative
  because it would result in a very large access offset or loop bound after the
  zero-extend. To this end one can optimistically assume the operand to be
  positive and avoid the piecewise definition if the bit-width is bigger than
  some threshold (here MaxZextSmallBitWidth).

  We choose to go with a hybrid solution of all modeling techniques described
  above. For small bit-widths (up to MaxZextSmallBitWidth) we will model the
  wrapping explicitly and use a piecewise defined function. However, if the
  bit-width is bigger than MaxZextSmallBitWidth we will employ overflow
  assumptions and assume the "former negative" piece will not exist.

llvm-svn: 267408
2016-04-25 14:01:36 +00:00
Johannes Doerfert f560b3d2db Introduce a parameter set type [NFC]
llvm-svn: 267401
2016-04-25 13:33:07 +00:00
Johannes Doerfert ec8a217729 Remove unnecessary argument of the SCEVValidator [NFC]
llvm-svn: 267400
2016-04-25 13:32:36 +00:00
Johannes Doerfert ac9c32e216 Translate SCEVs to isl_pw_aff and their invalid domain
The SCEVAffinator will now produce not only the isl representaiton of
  a SCEV but also the domain under which it is invalid. This is used to
  record possible overflows that can happen in the statement domains in
  the statements invalid domain. The result is that invalid loads have
  an accurate execution contexts with regards to the validity of their
  statements domain. While the SCEVAffinator currently is only taking
  "no-wrapping" assumptions, we can add more withouth worrying about the
  execution context of loads that are optimistically hoisted.

llvm-svn: 267288
2016-04-23 14:31:17 +00:00
Tobias Grosser 90303f872d SCoPValidator: Use SCEVTraversal to simplify SCEVInRegionDependences
llvm-svn: 266622
2016-04-18 15:46:27 +00:00
Johannes Doerfert 615e0b85f8 Record wrapping assumptions early
Utilizing the record option for assumptions we can simplify the wrapping
  assumption generation a lot. Additionally, we can now report locations
  together with wrapping assumptions, though they might not be accurate yet.

llvm-svn: 266069
2016-04-12 13:28:39 +00:00
Johannes Doerfert 65f86cd8b0 Simplify SCEVAffinator code [NFC]
llvm-svn: 266051
2016-04-12 09:33:47 +00:00
Johannes Doerfert 561d36b320 Allow pointer expressions in SCEVs again.
In r247147 we disabled pointer expressions because the IslExprBuilder did not
  fully support them. This patch reintroduces them by simply treating them as
  integers. The only special handling for pointers that is left detects the
  comparison of two address_of operands and uses an unsigned compare.

llvm-svn: 265894
2016-04-10 09:50:10 +00:00
Johannes Doerfert b3410db2b7 [FIX] Do not recompute SCEVs but pass them to subfunctions
This reverts commit 2879c53e80e05497f408f21ce470d122e9f90f94.
  Additionally, it adds SDiv and SRem instructions to the set of values
  discovered by the findValues function even if we add the operands to
  be able to recompute the SCEVs. In subfunctions we do not want to
  recompute SDiv and SRem instructions but pass them instead as they
  might have been created through the IslExprBuilder and are more
  complicated than simple SDiv/SRem instructions in the code.

llvm-svn: 265873
2016-04-09 14:30:11 +00:00
Johannes Doerfert 5155edc658 [FIX] Teach the ScopExpander about parallel subfunctions
llvm-svn: 265824
2016-04-08 18:16:58 +00:00
Johannes Doerfert b47cbe1c72 [FIX] Handle multiplications in the SCEVAffinator again
If ScalarEvolution cannot look through some expression but we do, it
  might happen that a multiplication will arrive at the
  SCEVAffinator::visitMulExpr. While we could always try to improve the
  extractConstantFactor function we might still miss something, thus we
  reintroduce the code to generate multiplicative piecewise-affine
  functions as a fall-back.

llvm-svn: 265777
2016-04-08 10:27:40 +00:00
Johannes Doerfert 7b81103589 [FIX] Look through div & srem instructions in SCEVs
The findValues() function did not look through div & srem instructions
  that were part of the argument SCEV. However, in different other
  places we already look through it. This mismatch caused us to preload
  values in the wrong order.

llvm-svn: 265775
2016-04-08 10:25:58 +00:00
Johannes Doerfert 6462d8c1d9 Generalize the domain complexity restrictions
This patch applies the restrictions on the number of domain conjuncts
  also to the domain parts of piecewise affine expressions we generate.
  To this end the wording is change slightly. It was needed to support
  complex additions featuring zext-instructions but it also fixes PR27045.

  lnt profitable runs reports only little changes that might be noise:
  Compile Time:
    Polybench/[...]/2mm                     +4.34%
    SingleSource/[...]/stepanov_container   -2.43%
  Execution Time:
    External/[...]/186_crafty               -2.32%
    External/[...]/188_ammp                 -1.89%
    External/[...]/473_astar                -1.87%

llvm-svn: 264514
2016-03-26 16:17:00 +00:00
Tobias Grosser 6733ba826a docs: Add doxygen mainpage
(and test if doxygen is updated on-commit)

llvm-svn: 262855
2016-03-07 21:17:48 +00:00
Michael Kruse afd2db5351 [SCEVValidator] Fix loop exit values considered affine.
Index calculations can use the last value that come out of a loop.
Ideally, ScalarEvolution can compute that exit value directly without
depending on the loop induction variable, but not in all cases.

This changes isAffine to not consider such loop exit values as affine to
avoid that SCEVExpander adds uses of the original loop induction
variable.

This fix is analogous to r262404 that applies to general uses of loop
exit values instead of index expressions and loop bouds as in this
patch.

This reduces the number of LNT test-suite fails with
-polly-position=before-vectorizer -polly-unprofitable
from 10 to 8.

llvm-svn: 262665
2016-03-03 22:10:52 +00:00
Michael Kruse 09eb4451d2 Pass scope and LoopInfo to SCEVValidator. NFC.
The scope will be required in the following fix. This commit separates
the large changes that do not change behaviour from the small, but
functional change.

llvm-svn: 262664
2016-03-03 22:10:47 +00:00
Michael Kruse 1bf6bafb2d Fix: Add pass manager barrier.
The LNT test suite with -polly-process-unprofitable
-polly-position=before-vectorizer currenty fails 59 tests. With this
barrier added, only 16 keep failing. This is probably because Polly's
code generation currently does not correctly preserve all analyses it
promised to preserve. Temporarily add this barrier until further
investigation.

llvm-svn: 262488
2016-03-02 14:59:16 +00:00
Michael Kruse c7e0d9c216 Fix non-synthesizable loop exit values.
Polly recognizes affine loops that ScalarEvolution does not, in
particular those with loop conditions that depend on hoisted invariant
loads. Check for SCEVAddRec dependencies on such loops and do not
consider their exit values as synthesizable because SCEVExpander would
generate them as expressions that depend on the original induction
variables. These are not available in generated code.

llvm-svn: 262404
2016-03-01 21:44:06 +00:00
Michael Kruse b3a7935d54 [SCEVValidator] Remove redundant visit.
SCEVAddRecExpr::getStart() is synonymous to SCEVAddRecExpr::getOperand(0)
which will be visited in the following loop anyway.

llvm-svn: 262375
2016-03-01 19:30:54 +00:00
Johannes Doerfert 85b04dedf4 [FIX] Compare SCEVs not values during SCEV expansion
This fixes a compile time bug in SPEC2006 403.gcc, namely an endless
  recursion in the ScopExpander::visitUnknown function.

llvm-svn: 261474
2016-02-21 16:36:00 +00:00
Hongbin Zheng 2ac7ee7139 Add more isl object printing functions
llvm-svn: 261402
2016-02-20 03:40:19 +00:00
Hongbin Zheng a7bdd29c9c Add more isl object printing function
llvm-svn: 261216
2016-02-18 15:24:42 +00:00
Johannes Doerfert 965edde695 Separate more constant factors of parameters
So far we separated constant factors from multiplications, however,
  only when they are at the outermost level of a parameter SCEV. Now,
  we also separate constant factors from the parameter SCEV if the
  outermost expression is a SCEVAddRecExpr. With the changes to the
  SCEVAffinator we can now improve the extractConstantFactor(...)
  function at will without worrying about any other code part. Thus,
  if needed we can implement a more comprehensive
  extractConstantFactor(...) function that will traverse the SCEV
  instead of looking only at the outermost level.

  Four test cases were affected. One did not change much and the other
  three were simplified.

llvm-svn: 260859
2016-02-14 22:30:56 +00:00
Michael Kruse 2e02d560aa Follow uses to create value MemoryAccesses
The previously implemented approach is to follow value definitions and
create write accesses ("push defs") while searching for uses. This
requires the same relatively validity- and requirement conditions to be
replicated at multiple locations (PHI instructions, other instructions,
uses by PHIs).

We replace this by iterating over the uses in a SCoP ("pull in
requirements"), and add writes only when at least one read has been
added. It turns out to be simpler code because each use is only iterated
over once and writes are added for the first access that reads it. We
need another iteration to identify escaping values (uses not in the
SCoP), which also makes the difference between such accesses more
obvious. As a side-effect, the order of scalar MemoryAccess can change.

Differential Revision: http://reviews.llvm.org/D15706

llvm-svn: 259987
2016-02-06 09:19:40 +00:00
Michael Kruse 70131d3416 Introduce MemAccInst helper class; NFC
MemAccInst wraps the common members of LoadInst and StoreInst. Also use
of this class in:
- ScopInfo::buildMemoryAccess
- BlockGenerator::generateLocationAccessed
- ScopInfo::addArrayAccess
- Scop::buildAliasGroups
- Replace every use of polly::getPointerOperand

Reviewers: jdoerfert, grosser

Differential Revision: http://reviews.llvm.org/D16530

llvm-svn: 258947
2016-01-27 17:09:17 +00:00
Michael Kruse b8d2644732 Print "null" for ISL objects that are nullptr
Use it to print "null" if a MemoryAccess's access relation is not
available instead of printing nothing.

Suggested-by: Johannes Doerfert
llvm-svn: 255466
2015-12-13 19:35:26 +00:00
Michael Kruse 4c86a1d97b IR cleanup after CodeGeneration
Re-run canonicalization passes after Polly's code generation.

The set of passes currently added here are nearly all the passes between
--polly-position=early and --polly-position=before-vectorizer, i.e. all
passes that would usually run after Polly.

In order to run these only if Polly actually modified the code, we add a
function attribute "polly-optimzed" to a function that contains
generated code. The cleanup pass is skipped if the function does not
have this attribute.

There is no support by the (legacy) PassManager to run passes only under
some conditions. One could have wrapped all transformation passes to run
only when CodeGeneration changed the code, but the analyses would run
anyway. This patch creates an independent pass manager. The
disadvantages are that all analyses have to re-run even if preserved and
it does not honor compiler switches like the PassManagerBuilder does.

Differential Revision: http://reviews.llvm.org/D14333

llvm-svn: 254150
2015-11-26 12:36:25 +00:00
Johannes Doerfert 2af10e2eed Use parameter constraints provided via llvm.assume
If an llvm.assume dominates the SCoP entry block and the assumed condition
  can be expressed as an affine inequality we will now add it to the context.

Differential Revision: http://reviews.llvm.org/D14413

llvm-svn: 252851
2015-11-12 03:25:01 +00:00
Tobias Grosser e3d1f1c0b0 ScopDetection: Tighten the check for always executed 'error blocks'
Basic blocks that are always executed can not be error blocks as their execution
can not possibly be an unlikely event. In this commit we tighten the check
if an error block to basic blcoks that do not dominate the exit condition, but
that dominate all exiting blocks of the scop.

llvm-svn: 252726
2015-11-11 13:25:13 +00:00
Tobias Grosser b12b006c4b ScopDetection: Do not allow blocks to reference operands in error blocks
r252713 introduced a couple of regressions due to later basic blocks refering
to instructions defined in error blocks which have not yet been modeled.

This commit is currently just encoding limitations of our modeling and code
generation backends to ensure correctness. In theory, we should be able to
generate and optimize such regions, as everything that is dominated by an error
region is assumed to not be executed anyhow. We currently just lack the code
to make this happen in practice.

llvm-svn: 252725
2015-11-11 12:44:18 +00:00
Tobias Grosser b43cc62fe1 stringFromIslObj: Do not crash when printing 'null' objects
No test case, as this code path is currently only used for debugging.

llvm-svn: 252609
2015-11-10 15:09:44 +00:00
Duncan P. N. Exon Smith b8f58b53dd polly/ADT: Remove implicit ilist iterator conversions, NFC
Remove all the implicit ilist iterator conversions from polly, in
preparation for making them illegal in ADT.  There was one oddity I came
across: at line 95 of lib/CodeGen/LoopGenerators.cpp, there was a
post-increment `Builder.GetInsertPoint()++`.

Since it was a no-op, I removed it, but I admit I wonder if it might be
a bug (both before and after this change)?  Perhaps it should be a
pre-increment?

llvm-svn: 252357
2015-11-06 22:56:54 +00:00
Johannes Doerfert 01978cfa0c Remove independent blocks pass
Polly can now be used as a analysis only tool as long as the code
  generation is disabled. However, we do not have an alternative to the
  independent blocks pass in place yet, though in the relevant cases
  this does not seem to impact the performance much. Nevertheless, a
  virtual alternative that allows the same transformations without
  changing the input region will follow shortly.

llvm-svn: 250652
2015-10-18 12:28:00 +00:00
Tobias Grosser d17183f20f Use EP_ModuleOptimizerEarly to run early polly passes,
instead of llvm::PassManagerBuilder::EP_EarlyAsPossible. This will allow us
to run actual module passes in Polly's canonicalization sequence, but should
otherwise have only little impact.

llvm-svn: 250091
2015-10-12 20:03:41 +00:00
Johannes Doerfert f363ed9804 [NFC] Move helper functions to ScopHelper
Helper functions in the BlockGenerators.h/cpp introduce dependences
  from the frontend to the backend of Polly. As they are used in
  ScopDetection, ScopInfo, etc. we move them to the ScopHelper file.

llvm-svn: 249919
2015-10-09 23:40:24 +00:00
Johannes Doerfert 08d90a3cee Treat conditionally executed non-pure calls as errors
This replaces the support for user defined error functions by a
  heuristic that tries to determine if a call to a non-pure function
  should be considered "an error". If so the block is assumed not to be
  executed at runtime. While treating all non-pure function calls as
  errors will allow a lot more regions to be analyzed, it will also
  cause us to dismiss a lot again due to an infeasible runtime context.
  This patch tries to limit that effect. A non-pure function call is
  considered an error if it is executed only in conditionally with
  regards to a cheap but simple heuristic.

llvm-svn: 249611
2015-10-07 20:32:43 +00:00
Johannes Doerfert 09e3697f44 Allow invariant loads in the SCoP description
This patch allows invariant loads to be used in the SCoP description,
  e.g., as loop bounds, conditions or in memory access functions.

  First we collect "required invariant loads" during SCoP detection that
  would otherwise make an expression we care about non-affine. To this
  end a new level of abstraction was introduced before
  SCEVValidator::isAffineExpr() namely ScopDetection::isAffine() and
  ScopDetection::onlyValidRequiredInvariantLoads(). Here we can decide
  if we want a load inside the region to be optimistically assumed
  invariant or not. If we do, it will be marked as required and in the
  SCoP generation we bail if it is actually not invariant. If we don't
  it will be a non-affine expression as before. At the moment we
  optimistically assume all "hoistable" (namely non-loop-carried) loads
  to be invariant. This causes us to expand some SCoPs and dismiss them
  later but it also allows us to detect a lot we would dismiss directly
  if we would ask e.g., AliasAnalysis::canBasicBlockModify(). We also
  allow potential aliases between optimistically assumed invariant loads
  and other pointers as our runtime alias checks are sound in case the
  loads are actually invariant. Together with the invariant checks this
  combination allows to handle a lot more than LICM can.

  The code generation of the invariant loads had to be extended as we
  can now have dependences between parameters and invariant (hoisted)
  loads as well as the other way around, e.g.,
    test/Isl/CodeGen/invariant_load_parameters_cyclic_dependence.ll
  First, it is important to note that we cannot have real cycles but
  only dependences from a hoisted load to a parameter and from another
  parameter to that hoisted load (and so on). To handle such cases we
  materialize llvm::Values for parameters that are referred by a hoisted
  load on demand and then materialize the remaining parameters. Second,
  there are new kinds of dependences between hoisted loads caused by the
  constraints on their execution. If a hoisted load is conditionally
  executed it might depend on the value of another hoisted load. To deal
  with such situations we sort them already in the ScopInfo such that
  they can be generated in the order they are listed in the
  Scop::InvariantAccesses list (see compareInvariantAccesses). The
  dependences between hoisted loads caused by indirect accesses are
  handled the same way as before.

llvm-svn: 249607
2015-10-07 20:17:36 +00:00
Tobias Grosser f4bb7a6a4d Consolidate the different ValueMapTypes we are using
There have been various places where llvm::DenseMap<const llvm::Value *,
llvm::Value *> types have been defined, but all types have been expected to be
identical. We make this more clear by consolidating the different types and use
BlockGenerator::ValueMapT wherever there is a need for types to match
BlockGenerator::ValueMapT.

llvm-svn: 249264
2015-10-04 10:18:32 +00:00
Johannes Doerfert f80f3b0449 Allow user defined error functions
The user can provide function names with
    -polly-error-functions=name1,name2,name3
  that will be treated as error functions. Any call to them is assumed
  not to be executed.

  This feature is mainly for developers to play around with the new
  "error block" feature.

llvm-svn: 249098
2015-10-01 23:45:51 +00:00