Allow subtargets to customize the generic scheduling strategy.
This is convenient for targets that don't need to add new heuristics
by specializing the strategy.
llvm-svn: 190176
Fast register pressure tracking currently only takes effect during
bottom up scheduling. Forcing this is a bit faster and simpler for
targets that don't have many scheduling constraints and don't need
top-down scheduling.
llvm-svn: 190014
If the instruction window is < NumRegs/2, pressure tracking is not
likely to be effective. The scheduler has to process a very large
number of tiny blocks. We want this to be fast.
llvm-svn: 189991
Register pressure tracking is half the complexity of the
scheduler. It's useful to be able to turn it off for compile time and
performance comparisons.
llvm-svn: 189987
There was one case that we could hit a DebugValue where I didn't think
to check. DebugValues are evil. No checkinable test case, sorry. It's
an obvious fix.
llvm-svn: 189717
Created SUPressureDiffs array to hold the per node PDiff computed during DAG building.
Added a getUpwardPressureDelta API that will soon replace the old
one. Compute PressureDelta here from the precomputed PressureDiffs.
Updating for liveness will come next.
llvm-svn: 189640
Estimate the cyclic critical path within a single block loop. If the
acyclic critical path is longer, then the loop will exhaust OOO
resources after some number of iterations. If lag between the acyclic
critical path and cyclic critical path is longer the the time it takes
to issue those loop iterations, then aggressively schedule for
latency.
llvm-svn: 189120
When registers must be live throughout the scheduling region, increase
the limit for the register class. Once we exceed the original limit,
they will be spilled, and there's no point further reducing pressure.
This isn't a perfect heuristics but avoids a situation where the
scheduler could become trapped by trying to achieve the impossible.
llvm-svn: 187436
Replace the ill-defined MinLatency and ILPWindow properties with
with straightforward buffer sizes:
MCSchedMode::MicroOpBufferSize
MCProcResourceDesc::BufferSize
These can be used to more precisely model instruction execution if desired.
Disabled some misched tests temporarily. They'll be reenabled in a few commits.
llvm-svn: 184032
"Counts" refer to scaled resource counts within a region. CurrMOps is
simply the number of micro-ops to be issue in the current cycle.
llvm-svn: 184031
Heuristics compare the critical path in the scheduled code, called
ExpectedLatency, with the latency of instructions remaining to be
scheduled. There are two ways to look at remaining latency:
(1) Dependent latency includes the latency between unscheduled and
scheduled instructions.
(2) Independent latency is simply the height (bottom-up) or depth
(top-down) of instructions currently in the ready Q.
llvm-svn: 184029
Fixes PR15838. Need to check for blocks with nothing but dbg.value.
I'm not sure how to force this situation with a unit test. I tried to
reduce the test case in PR15838 (1k lines of metadata) but gave up.
llvm-svn: 180227
For now, we just reschedule instructions that use the copied vregs and
let regalloc elliminate it. I would really like to eliminate the
copies on-the-fly during scheduling, but we need a complete
implementation of repairIntervalsInRange() first.
The general strategy is for the register coalescer to eliminate as
many global copies as possible and shrink live ranges to be
extended-basic-block local. The coalescer should not have to worry
about resolving local copies (e.g. it shouldn't attemp to reorder
instructions). The scheduler is a much better place to deal with local
interference. The coalescer side of this equation needs work.
llvm-svn: 180193