Summary:
After 60573ae6fe removed an include of Expr.h from ASTContext.h, this
header fails to compile in some modular build configurations. I have not
been able to reproduce the problem locally. The header compiles fine in
isolation. However, based on reading the code, it seems like it would
require Stmt to be complete. Based on that intuition, we decided to add the
include.
Reviewers: rdhindsa
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71222
Summary:
Split off of D67120.
Add the profile guided size optimization instrumentation / queries in the code
gen or target passes. This doesn't enable the size optimizations in those passes
yet as they are currently disabled in shouldOptimizeForSize (for non-IR pass
queries).
A second try after reverted D71072.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71149
In the presence of modules, we can have multiple lookup results for the
same entity, and we need to re-check for completeness each time we
consider a type.
This patch allows for -o to be used with -c when compiling with clang
interface stubs enabled. This is because the second file will be an
intermediate ifs stubs file that is the text stub analog of the .o file.
Both get produces in this case, so two files.
Why are we doing this? Because we want to support the case where
interface stubs are used bu first invoking clang like so:
clang -c <other flags> -emit-interface-stubs foo.c -o foo.o
...
clang -emit-interface-stubs <.o files> -o libfoo.so
This should generate N .ifs files, and one .ifso file. Prior to this
patch, using -o with the -c invocation was not possible. Currently the
clang driver supports generating a a.out/.so file at the same time as a
merged ifs file / ifso file, but this is done by checking that the final
job is the IfsMerge job. When -c is used, the final job is a Compile job
so what this patch does is check to figure out of the job type is
TY_IFS_CPP.
Differential Revision: https://reviews.llvm.org/D70763
Summary:
This is found during https://reviews.llvm.org/D70758
All the other record forms are having suffix o at the end.
ANDIo8 and ANDISo8 are the only two that put o before 8.
This patch rename them to be consistent with others.
Reviewers: #powerpc, hfinkel, nemanjai, lei, steven.zhang, echristo, jhibbits, joerg
Reviewed By: jhibbits
Subscribers: wuzish, hiraditya, kbarton, shchenz, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70928
"The debug adapter supports the delayed loading of parts of the stack,
which requires that both the 'startFrame' and 'levels' arguments and the
'totalFrames' result of the 'StackTrace' request are supported."
Lack of this field makes VSCode incorrectly display stack traces information
D71034
Fixed the test case to set --sysroot, which lets it succeed in the case where
a directory named "/usr/include/c++/v1" or "/usr/local/include/c++/v1" exists.
Original commit message:
> The NDK uses a separate set of libc++ headers in the sysroot. Any headers
> in the installation directory are not going to work on Android, not least
> because they use a different name for the inline namespace (std::__1 instead
> of std::__ndk1).
>
> This effectively makes it impossible to produce a single toolchain that is
> capable of targeting both Android and another platform that expects libc++
> headers to be installed in the installation directory, such as Mac.
>
> In order to allow this scenario to work, stop looking for headers in the
> install directory on Android.
Differential Revision: https://reviews.llvm.org/D71154
This test was accidentally passing on non-darwin OS because it was
explicitly setting the CFLAGS make variable. This meant that (in the
default config) it was building with absolutely no debug info, and so
setting a breakpoint on a stripped symbol failed, because there was
really no trace of it remaining. In other configurations, we were
generating the debug info (-gsplit-dwarf implies -g) and the test failed
because we did not treat the zeroed out debug info address specially.
The test was also xfailed in pretty much every non-standard
configuration.
This patch fixes the makefile to avoid messing with CFLAGS (use
CFLAGS_EXTRAS instead). This causes it to fail in all configurations
(except darwin), and so I replace the various decorators with a simple
os!=darwin check.
Summary:
Currently we only delete function body from declaration, in addition to
that we should also drop ctor initializers.
Unfortunately CXXConstructorDecl doesn't store the location of `:` before
initializers, therefore we make use of token buffer to figure out where to start
deletion.
Fixes https://github.com/clangd/clangd/issues/220
Reviewers: hokein, ilya-biryukov
Subscribers: MaskRay, jkorous, arphaman, usaxena95, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71188
Summary:
Only function declarations should have the default arguments.
This patch makes sure we don't propogate those arguments to out-of-line
definitions.
Fixes https://github.com/clangd/clangd/issues/221
Reviewers: hokein
Subscribers: ilya-biryukov, MaskRay, jkorous, arphaman, usaxena95, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71187
Refactor FinishCall to be more easily understandable as a precursor to
implementing indirect calls for AIX. The refactor tries to group similar
code together at the cost of some code duplication. The high level
overview of the refactor:
- Adds a number of helper functions for things like:
* Determining if a call is indirect.
* What the Opcode for a call is.
* Transforming the callee for a direct function call.
* Extracting the Chain operand from a CallSeqStart node.
* Building the operands of the call.
- Adds helpers for building the indirect call DAG nodes
(excluding the call instruction itself which is created in
`FinishCall`).
- Removes PrepareCall, which has been subsumed by the
helpers.
- Rename 'InFlag' to 'Glue'.
- FinishCall has been refactored to:
1) Set TOC pointer usage on the DAG for the TOC based
subtargets.
2) Calculate if a call is indirect.
3) Determine the Opcode to use for the call
instruction.
4) Transform the Callee for direct calls, or build
the DAG nodes for indirect calls.
5) Buildup the call operands.
6) Emit the call instruction.
7) If needed, emit the callSeqEnd Node and
finish lowering by calling `LowerCallResult`
Differential Revision: https://reviews.llvm.org/D70126
Guard the Python type map in SBTarget by the SWIGPYTHON define to
ensures the rest of the interface can be reused for other languages
supported by SWIG.
I rewrote the isel tablegen for MVE immediate shifts, and accidentally
removed the `let Predicates=[HasMVEInt]` that was wrapping the old
version, which seems to have allowed those rules to cause trouble on
non-MVE targets. That's what I get for only re-running the MVE tests.
Summary:
GWP-ASan test currently fail on 32-bit platforms, as some of the pointers are
larger than `uintptr_t` on 32-bit platforms. Fix up all those instances.
Also add an uncompress varint test where the result is an underflow.
Furthermore, allow multi-init for testing. Each gtest when running
`check-gwp_asan` apparently runs in its own instance, but when integrating
these tests into Android, this behaviour isn't the same. We remove the
global multi-init check here, to allow for testing to work elsewhere, and we're
not really worried about multi-init anyway as it's part of our contract with
the allocator.
Reviewers: eugenis, vlad.tsyrklevich
Reviewed By: eugenis
Subscribers: #sanitizers, llvm-commits, pcc
Tags: #sanitizers, #llvm
Differential Revision: https://reviews.llvm.org/D71121
Summary:
This adds the family of `vshlq_n` and `vshrq_n` ACLE intrinsics, which
shift every lane of a vector left or right by a compile-time
immediate. They mostly work by expanding to the IR `shl`, `lshr` and
`ashr` operations, with their second operand being a vector splat of
the immediate.
There's a fiddly special case, though. ACLE specifies that the
immediate in `vshrq_n` can take values up to //and including// the bit
size of the vector lane. But LLVM IR thinks that shifting right by the
full size of the lane is UB, and feels free to replace the `lshr` with
an `undef` half way through the optimization pipeline. Hence, to keep
this legal in source code, I have to detect it at codegen time.
Logical (unsigned) right shifts by the element size are handled by
simply emitting the zero vector; arithmetic ones are converted into a
shift of one bit less, which will always give the same output.
In order to do that check, I also had to enhance the tablegen
MveEmitter so that it can cope with converting a builtin function's
operand into a bare integer to pass to a code-generating subfunction.
Previously the only bare integers it knew how to handle were flags
generated from within `arm_mve.td`.
Reviewers: dmgreen, miyuki, MarkMurrayARM, ostannard
Reviewed By: MarkMurrayARM
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71065
The cycle values in modulo scheduling results can be negative.
The result of ModuloSchedule::getCycle() must be received as an int type.
Patch by Masaki Arai!
Differential Revision: https://reviews.llvm.org/D71122
Summary:
Previously, xrefs has inconsistent behavior when the reference is inside
macro body:
- AST-based xrefs (for main file) uses the expansion location;
- our index uses the spelling location;
This patch makes our index use file locations for references, which is
consistent with AST-based xrefs, and kythe as well.
After this patch, memory usage of static index on LLVM increases ~5%.
Reviewers: ilya-biryukov
Subscribers: merge_guards_bot, MaskRay, jkorous, arphaman, kadircet, usaxena95, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D70480
When committing dba420bc05, I missed that a darwin-specific change had
been recently introduced into llvm-cxxfilt, which my change ignored and
consequently broke the darwin build bot. This change fixes this issue as
well as improving naming/commenting of things related to this point so
that people are less likely to run into the same issue as I did.
Summary:
We only do a trivial check whether the region always returns - it has to end
with a return statement.
Reviewers: kadircet
Subscribers: ilya-biryukov, MaskRay, jkorous, arphaman, usaxena95, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D70569
Summary:
Instead, emit a diagnostic and return an empty ASM node, as we do if the target
is missing.
Filter this diagnostic out in clangd, where it's not meaningful.
Fixes https://github.com/clangd/clangd/issues/222
Reviewers: kadircet
Subscribers: mgorny, ilya-biryukov, jkorous, arphaman, usaxena95, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D71189
CodeGenPrepare::placeDebugValues moves variable location intrinsics to be
immediately after the Value they refer to. This makes tracking of locations
very easy; but it changes the order in which assignments appear to the
debugger, from the source programs order to the order in which the
optimised program computes values. This then leads to PR43986 and PR38754,
where variable locations that were in a conditional block are made
unconditional, which is highly misleading.
This patch adjusts placeDbgValues to only re-order variable location
intrinsics if they use a Value before it is defined, significantly reducing
the damage that it does. This is still not 100% safe, but the rest of
CodeGenPrepare needs polishing to correctly update debug info when
optimisations are performed to fully fix this.
This will probably break downstream debuginfo tests -- if the
instruction-stream position of variable location changes isn't the focus of
the test, an easy fix should be to manually apply placeDbgValues' behaviour
to the failing tests, moving dbg.value intrinsics next to SSA variable
definitions thus:
%foo = inst1
%bar = ...
%baz = ...
void call @llvm.dbg.value(metadata i32 %foo, ...
to
%foo = inst1
void call @llvm.dbg.value(metadata i32 %foo, ...
%bar = ...
%baz = ...
This should return your test to exercising whatever it was testing before.
Differential Revision: https://reviews.llvm.org/D58453
Summary:
This patch deletes the lldb location list parser and teaches the
DWARFExpression class to use the parser in llvm instead. I have
centralized all the places doing the parsing into a single
GetLocationExpression function.
In theory the the actual location list parsing should be covered by llvm
tests, and this glue code by our existing location list tests, but since
we don't have that many location list tests, I've tried to extend the
coverage a bit by adding some explicit dwarf5 loclist handling and a
test of the dumping code.
For DWARF4 location lists this should be NFC (modulo small differences
in error handling which should only show up on invalid inputs). In case
of DWARF5, this fixes various missing bits of functionality, most
notably, the lack of support for DW_LLE_offset_pair.
Reviewers: JDevlieghere, aprantl, clayborg
Subscribers: lldb-commits, dblaikie
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D71003
Summary:
Lldb support base address selection entries in location lists was broken
for a long time. This wasn't noticed until llvm started producing these
kinds of entries more frequently with r374600.
In r374769, I made a quick patch which added sufficient support for them
to get the test suite to pass. However, I did not fully understand how
this code operates, and so the fix was not complete. Specifically, what
was lacking was the ability to handle modules which were not loaded at
their preferred load address (for instance, due to ASLR).
Now that I better understand how this code works, I've come to the
conclusion that the current setup does not provide enough information
to correctly process these entries. In the current setup the location
lists were parameterized by two addresses:
- the distance of the function start from the start of the compile unit.
The purpose of this was to make the location ranges relative to the
start of the function.
- the actual address where the function was loaded at. With this the
function-start-relative ranges can be translated to actual memory
locations.
The reason for the two values, instead of just one (the load bias) is (I
think) MachO, where the debug info in the object files will appear to be
relative to the address zero, but the actual code it refers to
can be moved and reordered by the linker. This means that the location
lists need to be "linked" to reflect the locations in the actual linked
file.
These two bits of information were enough to correctly process location
lists which do not contain base address selection entries (and so all
entries are relative to the CU base). However, they don't work with
them because, in theory two base address can be completely unrelated (as
can happen for instace with hot/cold function splitting, where the
linker can reorder the two pars arbitrarily).
To fix that, I split the first parameter into two:
- the compile unit base address
- the function start address, as is known in the object file
The new algorithm becomes:
- the location lists are processed as they were meant to be processed.
The CU base address is used as the initial base address value. Base
address selection entries can set a new base.
- the difference between the "file" and "load" function start addresses
is used to compute the load bias. This value is added to the final
ranges to get the actual memory location.
This algorithm is correct for non-MachO debug info, as there the
location lists correctly describe the code in the final executable, and
the dynamic linker can just move the entire module, not pieces of it. It
will also be correct for MachO if the static linker preserves relative
positions of the various parts of the location lists -- I don't know
whether it actually does that, but judging by the lack of base address
selection support in dsymutil and lldb, this isn't something that has
come up in the past.
I add a test case which simulates the ASLR scenario and demonstrates
that base address selection entries now work correctly here.
Reviewers: JDevlieghere, aprantl, clayborg
Subscribers: dblaikie, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70532
Mostly this adds testing for certain aliases in more explicit ways.
There are also a few tidy-ups, and additions of missing testing, where
the feature was either not tested at all, or not tested explicitly and
sufficiently.
Reviewed by: MaskRay, rupprecht, grimar
Differential Revision: https://reviews.llvm.org/D71116
Summary:
This patch adds intrinsics for the following MVE instructions:
* VCADD, VHCADD
* VCMUL
* VCMLA
Each of the above 3 groups has a corresponding new LLVM IR intrinsic.
Reviewers: simon_tatham, MarkMurrayARM, ostannard, dmgreen
Reviewed By: MarkMurrayARM
Subscribers: merge_guards_bot, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71190
It appears that the cl::bits options are not used anywhere in-tree. In
the recent addition to add Callback's to the options, the Callback was
missing from this one. This fixes it by adding the same code from the
other classes.
It also adds a simple test, of sorts, just to make sure these continue
compiling.
With the extra optimisations we have done, these should now be fine to
enable by default. Which is what this patch does.
Differential Revision: https://reviews.llvm.org/D70968