Summary:
PerformVMOVRRDCombine ommits adding a offset
of 4 to the PointerInfo, when converting a
f64 = load[M]
to
{i32, i32} = {load[M], load[M + 4]}
Which would allow the machine scheduller
to break dependencies with the second load.
- pr42638
Reviewers: eli.friedman, dmgreen, ostannard
Reviewed By: ostannard
Subscribers: ostannard, javed.absar, kristof.beyls, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64870
llvm-svn: 366423
Windows sees DW_AT_decl_file (".\dwarf-riscv-relocs.c") while Linux sees
DW_AT_decl_file ("./dwarf-riscv-relocs.c").
This fixes a failure introduced in rL366402.
llvm-svn: 366410
I'm not convinced the code this calls is properly vetted for
vXi1 vectors. Experimental vector widening legalization testing
for D55251 is now hitting an assertion failure inside
EltsFromConsecutiveLoads. This is occurring from a v2i1 load
having a store size different than its VT size. Hopefully
this commit will keep such issues from happening.
llvm-svn: 366405
When code relaxation is enabled many RISC-V fixups are not resolved but
instead relocations are emitted. This happens even for DWARF debug
sections. Therefore, to properly support the parsing of DWARF debug info
we need to be able to resolve RISC-V relocations. This patch adds:
* Support for RISC-V relocations in RelocationResolver
* DWARF support for two relocations per object file offset
* DWARF changes to support relocations in more DIE fields
The two relocations per offset change is needed because some RISC-V
relocations (used for label differences) come in pairs.
Relocations can also be emitted for DWARF fields where relocations were
not yet evaluated. Adding relocation support for some of these fields is
essencial. On the other hand, LLVM currently emits RISC-V relocations
for fixups that could be safely evaluated, since they can never be
affected by code relaxations. This patch also adds relocation support
for the fields affected by those extraneous relocations (the DWARF unit
entry Length, and the DWARF debug line entry TotalLength and
PrologueLength), for testing purposes.
Differential Revision: https://reviews.llvm.org/D62062
Patch by Luís Marques.
llvm-svn: 366402
Summary:
LoopInfoWrapperPass::verify uses DT, which means DT must be alive
even if it has no direct users.
Fixes a crash in expensive checks mode.
Reviewers: pcc, leonardchan
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64896
llvm-svn: 366388
After rL365286 I had failing test:
LLVM :: tools/gold/X86/v1.12/thinlto_emit_linked_objects.ll
It was failing with the output:
$ llvm-bcanalyzer --dump llvm/test/tools/gold/X86/v1.12/Output/thinlto_emit_linked_objects.ll.tmp3.o.thinlto.bc
Expected<T> must be checked before access or destruction.
Unchecked Expected<T> contained error:
Unexpected end of file reading 0 of 0 bytesStack dump:
Change-Id: I07e03262074ea5e0aae7a8d787d5487c87f914a2
llvm-svn: 366387
- getCompression() used to return a PDB_SourceCompression even though
the docs for IDiaInjectedSource are explicit about the return value
being compiler-dependent. Return an uint32_t instead, and make the
printing code handle unknown values better by printing "Unknown" and
the int value instead of not printing any compression.
- Print compressed contents as hex dump, not as string.
- Add compression type "DotNet", which is used (at least) by csc.exe,
the C# compiler. Also add a lengthy comment describing the stream
contents (derived from looking at the raw hex contents long enough
to see the GUIDs, which led me to the roslyn and mono implementations
for handling this).
- The native injected source dumper was dumping the contents of the
whole data stream -- but csc.exe writes a stream that's padded with
zero bytes to the next 512 boundary, and the dia api doesn't display
those padding bytes. So make NativeInjectedSource::getCode() do the
same thing.
Differential Revision: https://reviews.llvm.org/D64879
llvm-svn: 366386
This will let us instrument globals during initialization. This required
making the new PM pass a module pass, which should still provide access to
analyses via the ModuleAnalysisManager.
Differential Revision: https://reviews.llvm.org/D64843
llvm-svn: 366379
The LocalStackSlotPass pre-allocates a stack protector and makes sure
that it comes before the local variables on the stack.
We need to make sure that later during PEI we don't re-allocate a new
stack protector slot. If that happens, the new stack protector slot will
end up being **after** the local variables that it should be protecting.
Therefore, we would have two slots assigned for two different stack
protectors, one at the top of the stack, and one at the bottom. Since
PEI will overwrite the assigned slot for the stack protector, the load
that is used to compare the value of the stack protector will use the
slot assigned by PEI, which is wrong.
For this, we need to check if the object is pre-allocated, and re-use
that pre-allocated slot.
Differential Revision: https://reviews.llvm.org/D64757
llvm-svn: 366371
Extract the sources to the GCD of the original size and target size,
padding with implicit_def as necessary.
Also fix the case where the requested source type is wider than the
original result type. This was ignoring the type, and just using the
destination. Do the operation in the requested type and truncate back.
llvm-svn: 366367
Use an anyext to the requested type for the leftover operand to
produce a slightly wider type, and then truncate the final merge.
I have another implementation almost ready which handles arbitrary
widens, but I think it produces worse code in this example (which I
think is 90% due to not folding redundant copies or folding out
implicit_def users), so I wanted to add this as a baseline first.
llvm-svn: 366366
Implement IR intrinsics for stack tagging. Generated code is very
unoptimized for now.
Two special intrinsics, llvm.aarch64.irg.sp and llvm.aarch64.tagp are
used to implement a tagged stack frame pointer in a virtual register.
Differential Revision: https://reviews.llvm.org/D64172
llvm-svn: 366360
Summary:
Since the target has no significant advantage of vectorization,
vector instructions bous threshold bonus should be optional.
amdgpu-inline-arg-alloca-cost parameter default value and the target
InliningThresholdMultiplier value tuned then respectively.
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, eraman, hiraditya, haicheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64642
llvm-svn: 366348
Summary:
ORCv1 is deprecated. The current aim is to remove it before the LLVM 10.0
release. This patch adds deprecation attributes to the ORCv1 layers and
utilities to warn clients of the change.
Reviewers: dblaikie, sgraenitz, AlexDenisov
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64609
llvm-svn: 366344
Summary:
Deduce the "willreturn" attribute for functions.
For now, intrinsics are not willreturn. More annotation will be done in another patch.
Reviewers: jdoerfert
Subscribers: jvesely, nhaehnle, nicholas, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63046
llvm-svn: 366335
These tests that failed on Darwin but passed on other machines due to the default archive format differing
on a Darwin machine, and what looks to be bugs in the output of this format.
I can not investigate these issue further so the tests are considered expected failures on Darwin.
Differential Revision: https://reviews.llvm.org/D64802
llvm-svn: 366334
This follows the RFC <http://lists.llvm.org/pipermail/llvm-dev/2019-July/133724.html>.
Follow-on commits will add appropriate release notes changes etc.
Pushing this now and in a minimal form so there is reasonable time before 9.0
branches to resolve any issues arising from e.g. the backend being exposed on
different sanitizer setups.
The current builder for RISC-V is on the staging build-bot
<http://lab.llvm.org:8014/builders/llvm-riscv-linux>, however with the RISCV
backend being built by default it won't provide any real additional coverage.
We will shortly set up a builder that runs the test-suite in qemu-user.
llvm-svn: 366331
The original behavior was to always emit the offsets to each call site in the
call site table as uleb128 values, however on some architectures (eg RISCV)
these uleb128 offsets into the code cannot always be resolved until link time
(because relaxation will invalidate any calculated offsets), and there are no
appropriate relocations for uleb128 values. As a consequence it needs to be
possible to specify an alternative.
This also switches RISCV to use DW_EH_PE_udata4 for call side encodings in
.gcc_except_table
Differential Revision: https://reviews.llvm.org/D63415
Patch by Edward Jones.
llvm-svn: 366329
These intrinsics do in fact work with non-constant index arguments.
These are lowered to either the generic
ISD::INSERT_VECTOR_ELT/ISD::EXTRACT_VECTOR_ELT, or to
VEXTRACT_SEXT_ELT. The handling of these all accept variable
indexes. Turning these into generic instructions which do allow
variables introduces complications in a future change to immarg
handling.
Since these just turn into generic instructions, these are kind of
pointless and should probably just be autoupgraded to
extractelement/insertelement.
llvm-svn: 366328
This patch sets correct encodings for DWARF exception handling for RISC-V
(other than call site encoding, which must be udata4 rather than uleb128 and
is handled by D63415).
This has the same intend as D63409, except this version matches GCC/binutils
behaviour which uses the same encodings regardless of PIC/non-PIC and
medlow/medany code model.
llvm-svn: 366327