When code relaxation is enabled many RISC-V fixups are not resolved but
instead relocations are emitted. This happens even for DWARF debug
sections. Therefore, to properly support the parsing of DWARF debug info
we need to be able to resolve RISC-V relocations. This patch adds:
* Support for RISC-V relocations in RelocationResolver
* DWARF support for two relocations per object file offset
* DWARF changes to support relocations in more DIE fields
The two relocations per offset change is needed because some RISC-V
relocations (used for label differences) come in pairs.
Relocations can also be emitted for DWARF fields where relocations were
not yet evaluated. Adding relocation support for some of these fields is
essencial. On the other hand, LLVM currently emits RISC-V relocations
for fixups that could be safely evaluated, since they can never be
affected by code relaxations. This patch also adds relocation support
for the fields affected by those extraneous relocations (the DWARF unit
entry Length, and the DWARF debug line entry TotalLength and
PrologueLength), for testing purposes.
Differential Revision: https://reviews.llvm.org/D62062
Patch by Luís Marques.
llvm-svn: 366402
Summary:
Add a --vs-diagnostics flag that alters the format of diagnostic output
to enable source hyperlinks in Visual Studio.
Differential Revision: https://reviews.llvm.org/D58484
Reviewed by: ruiu
llvm-svn: 366333
Summary:
After D58892 split the RW PT_LOAD on the PT_GNU_RELRO boundary, the new
layout is:
PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro)) PT_LOAD(.data. .bss)
The two pageAlign() calls at PT_GNU_RELRO boundaries are redundant due
to the existence of PT_LOAD.
Reviewers: grimar, peter.smith, ruiu, espindola
Reviewed By: ruiu
Subscribers: sfertile, atanasyan, emaste, arichardson, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64854
llvm-svn: 366307
In LLDB, when parsing type units, we don't need to parse the whole line
table. Instead, we only need to parse the "support files" from the line
table prologue.
To make that possible, this patch moves the respective functions from
the LineTable into the Prologue. Because I don't think users of the
LineTable should have to know that these files come from the Prologue,
I've left the original methods in place, and made them redirect to the
LineTable.
Differential revision: https://reviews.llvm.org/D64774
llvm-svn: 366164
This removes a call to `object::getSymbol<ELFT>`.
We used this function in a next way: it was given an
array of symbols and index and returned either a symbol
at the index given or a error.
This function was removed in D64631.
(rL366052, but was reverted because of LLD compilation error
that I didn't know about).
It does not make much sense to keep this function on LLVM side
only for LLD, because having only a list of symbols and the index it
is not able to produce a valueable error message about context anyways.
llvm-svn: 366057
This fixes PR38549, which is silently accepted by ld.bfd.
This seems correct because it makes sense to let non-glob patterns take
precedence over glob patterns.
lld issues an error because
`assignWildcardVersion(ver, VER_NDX_LOCAL);` is processed before `assignExactVersion(ver, v.id, v.name);`.
Move all assignWildcardVersion() calls after assignExactVersion() calls
to fix this.
Also, move handleDynamicList() to the bottom. computeBinding() called by
includeInDynsym() has this cryptic rule:
if (versionId == VER_NDX_LOCAL && isDefined() && !isPreemptible)
return STB_LOCAL;
Before the change:
* foo's version is set to VER_NDX_LOCAL due to `local: *`
* handleDynamicList() is called
- foo.computeBinding() is STB_LOCAL
- foo.includeInDynsym() is false
- foo.isPreemptible is not set (wrong)
* foo's version is set to V1
After the change:
* foo's version is set to VER_NDX_LOCAL due to `local: *`
* foo's version is set to V1
* handleDynamicList() is called
- foo.computeBinding() is STB_GLOBAL
- foo.includeInDynsym() is true
- foo.isPreemptible is set (correct)
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D64550
llvm-svn: 365760
In lvm2, libdevmapper.so is linked with a version script with duplicate
version assignments:
DM_1_02_138 { global: ... dm_bitset_parse_list; ... };
DM_1_02_129 { global: ... dm_bitset_parse_list; ... };
ld.bfd silently accepts this while gold issues a warning. We currently
error, thus inhibit producing the executable. Change the error to
warning to allow this case, and improve the message.
There are some cases where ld.bfd error
`anonymous version tag cannot be combined with other version tags`
but we just warn. It is probably OK for now.
Reviewed By: grimar, ruiu
Differential Revision: https://reviews.llvm.org/D64549
llvm-svn: 365759
This patch does the same thing as r365595 to other subdirectories,
which completes the naming style change for the entire lld directory.
With this, the naming style conversion is complete for lld.
Differential Revision: https://reviews.llvm.org/D64473
llvm-svn: 365730
D64130 introduced a bug described in the following message:
https://reviews.llvm.org/D64130#1571560
The problem can happen with the following script:
SECTIONS {
.out : {
...
FILL(0x10101010)
*(.aaa)
...
}
The current code tries to read (0x10101010) as an expression and
does not break when meets *, what results in a script parsing error.
In this patch, I verify that FILL command's expression always wrapped in ().
And at the same time =<fillexp> expression can be both wrapped or unwrapped.
I checked it matches to bfd/gold.
Differential revision: https://reviews.llvm.org/D64476
llvm-svn: 365635
This patch is mechanically generated by clang-llvm-rename tool that I wrote
using Clang Refactoring Engine just for creating this patch. You can see the
source code of the tool at https://reviews.llvm.org/D64123. There's no manual
post-processing; you can generate the same patch by re-running the tool against
lld's code base.
Here is the main discussion thread to change the LLVM coding style:
https://lists.llvm.org/pipermail/llvm-dev/2019-February/130083.html
In the discussion thread, I proposed we use lld as a testbed for variable
naming scheme change, and this patch does that.
I chose to rename variables so that they are in camelCase, just because that
is a minimal change to make variables to start with a lowercase letter.
Note to downstream patch maintainers: if you are maintaining a downstream lld
repo, just rebasing ahead of this commit would cause massive merge conflicts
because this patch essentially changes every line in the lld subdirectory. But
there's a remedy.
clang-llvm-rename tool is a batch tool, so you can rename variables in your
downstream repo with the tool. Given that, here is how to rebase your repo to
a commit after the mass renaming:
1. rebase to the commit just before the mass variable renaming,
2. apply the tool to your downstream repo to mass-rename variables locally, and
3. rebase again to the head.
Most changes made by the tool should be identical for a downstream repo and
for the head, so at the step 3, almost all changes should be merged and
disappear. I'd expect that there would be some lines that you need to merge by
hand, but that shouldn't be too many.
Differential Revision: https://reviews.llvm.org/D64121
llvm-svn: 365595
GCC emits warning on this line:
error: enumeral and non-enumeral type in conditional
expression [-Werror=extra]
Change-Id: I04969cc32e27e310968b88ebaa4e1c4894528d74
llvm-svn: 365434
With this, `clang-cl /source-charset:utf-16 test.cc` now prints `invalid
value 'utf-16' in '/source-charset:utf-16'` instead of `invalid value
'utf-16' in '-finput-charset=utf-16'` before, and several other clang-cl
flags produce much less confusing output as well.
Fixes PR29106.
Since an arg and its alias can have different arg types (joined vs not)
and different values (because of AliasArgs<>), I chose to give the Alias
its own Arg object. For convenience, I just store the alias directly in
the unaliased arg – there aren't many arg objects at runtime, so that
seems ok.
Finally, I changed Arg::getAsString() to use the alias's representation
if it's present – that function was already documented as being the
suitable function for diagnostics, and most callers already used it for
diagnostics.
Implementation-wise, Arg::accept() previously used to parse things as
the unaliased option. The core of that switch is now extracted into a
new function acceptInternal() which parses as the _aliased_ option, and
the previously-intermingled unaliasing is now done as an explicit step
afterwards.
(This also changes one place in lld that didn't use getAsString() for
diagnostics, so that that one place now also prints the flag as the user
wrote it, not as it looks after it went through unaliasing.)
Differential Revision: https://reviews.llvm.org/D64253
llvm-svn: 365413
Since OPT_UNKNOWN args never have any values and consist only of
spelling (and are never aliased), this doesn't make any difference in
practice, but it's more consistent with Arg's guidance to use
getAsString() for diagnostics, and it matches what clang does.
Also tweak two tests to use an unknown option that contains '=' for
additional coverage while here. (The new tests pass fine with the old
code too though.)
llvm-svn: 365200
This fixes an 8-year-old regression. r105763 made it so that aliases
always refer to the unaliased option – but it missed the "joined" branch
of JoinedOrSeparate flags. (r162231 then made the Args classes
non-virtual, and r169344 moved them from clang to llvm.)
Back then, there was no JoinedOrSeparate flag that was an alias, so it
wasn't observable. Now /U in CLCompatOptions is a JoinedOrSeparate alias
in clang, and warn_slash_u_filename incorrectly used the aliased arg id
(using the unaliased one isn't really a regression since that warning
checks if the undefined macro contains slash or backslash and only then
emits the warning – and no valid use will pass "-Ufoo/bar" or similar).
Also, lld has many JoinedOrSeparate aliases, and due to this bug it had
to explicitly call `getUnaliasedOption()` in a bunch of places, even
though that shouldn't be necessary by design. After this fix in Option,
these calls really don't have an effect any more, so remove them.
No intended behavior change.
(I accidentally fixed this bug while working on PR29106 but then
wondered why the warn_slash_u_filename broke. When I figured it out, I
thought it would make sense to land this in a separate commit.)
Differential Revision: https://reviews.llvm.org/D64156
llvm-svn: 365186
The difference from D63432/r365015 is that this patch does not place
SHF_STRINGS sections with different alignments into the same
MergeSyntheticSection. Doing that would:
(1) create unnecessary padding and thus waste space.
Add a test tail-merge-string-align2.s to check no extra padding is created.
(2) make some input sections unaligned when tail merge (-O2) is enabled.
The alignment of MergeTailAlignment::Builder was out of sync in D63432.
MOVAPS on such unaligned strings can raise SIGSEGV.
This should fix PR42289: the Linux kernel has a use case that input
files have .rodata.cst32 sections with different alignments. The
expectation (and what ld.bfd and gold do) is that in the -r link, there
is only one .rodata.cst32 (SHF_MERGE sections with different alignments
can be combined), but lld currently creates one for each different
alignment.
The current merging strategy:
1) Group SHF_MERGE sections by (name, sh_flags, sh_entsize and
sh_addralign). Merging is performed among a group, even if -O0 is specified.
2) Create one output section for each group. This is a special case in
addInputSec().
This patch changes 1) to:
1) Group SHF_MERGE sections by (name, sh_flags, sh_entsize).
Merging is performed among a group, even if -O0 is specified.
We will thus create just one .rodata.cst32 . This also improves merging
efficiency when sections with the same name but different alignments are
combined.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D64200
llvm-svn: 365139
If %t1.o has a weak reference on foo, and %t2.so has a non-weak
reference on foo: `ld.lld %t1.o %t2.so -o %t`
We incorrectly set the binding of the undefined foo to STB_GLOBAL.
Fix this by ignoring undefined symbols in a SharedFile for Undefined and
SharedSymbol.
This fixes the binding of pthread_once when the program links against
both librt.so and libpthread.so
```
a.o: STB_WEAK reference to pthread_once
librt.so: STB_GLOBAL reference to pthread_once # should be ignored
libstdc++.so: STB_WEAK reference to pthread_once # should be ignored
libgcc_s.so.1: STB_WEAK reference to pthread_once # should be ignored
```
The STB_GLOBAL pthread_once issue (not fixed by D63974) can cause a link error when the result
DSO is used to link another DSO with -z defs if -lpthread is not specified. (libstdc++.so.6 not having a dependency on libpthread.so is a really nasty hack...)
We happened to create a weak undef before D63974 because libgcc_s.so.1
was linked the last and it changed the binding again to weak.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D64136
llvm-svn: 365129
The referenced symbol is expected to point to an R_RISCV_*_HI20
relocation. An absolute symbol has no associated section, therefore
there cannot be a matching R_RISCV_*_HI20.
This fixes the crash reported by PR42038. For reference, ld.bfd errors:
(.init+0x4): dangerous relocation: %pcrel_lo missing matching %pcrel_hi
Differential Revision: https://reviews.llvm.org/D63273
llvm-svn: 365049
This reverts r365015.
David Zarzycki reported this change broke stage2 and stage3 tests. The
root cause is still not very clear, but I guess some SHF_MERGE sections
with the same name have different alignments. They were not merged
before but were merged after r365015.
Something that assumes address uniqueness of such mergeable data caused
the bug.
llvm-svn: 365048
gcc may generate .debug_info/.debug_aranges/.debug_line/etc that are
relocated by R_RISCV_ADD*/R_RISCV_SUB* pairs.
Allow R_RISCV_ADD in non-SHF_ALLOC section to fix link errors like:
ld.lld: error: print.c:(.debug_frame+0x60): has non-ABS relocation R_RISCV_ADD64 against symbol '.L0 '
Differential Revision: https://reviews.llvm.org/D63259
llvm-svn: 365035
This should fix PR42289: the Linux kernel has a use case that input
files have .rodata.cst32 sections with different alignments. The
expectation (and what ld.bfd and gold do) is that in the -r link, there
is only one .rodata.cst32 (SHF_MERGE sections with different alignments
can be combined), but lld currently creates one for each different
alignment.
The current merging strategy:
1) Group SHF_MERGE sections by (name, sh_flags, sh_entsize and
sh_addralign). String merging is performed among a group, even if -O0 is specified.
2) Create one output section for each group. This is a special case in
addInputSec().
This patch changes 1) to:
1) Group SHF_MERGE sections by (name, sh_flags, sh_entsize).
String merging is performed among a group, even if -O0 is specified.
We will thus create just one .rodata.cst32 . This also improves merging
efficiency when sections with the same name but different alignments are
combined.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D63432
llvm-svn: 365015
Some variables in lld have the same name as functions ignoring case.
This patch gives them different names, so that my next patch is easier
to read.
llvm-svn: 365003
This matches the wasm lld and GNU ld behavior.
The ELF linker has special handling for bitcode archives but if that
doesn't kick in we probably want to error out rather than silently
ignore the library.
Differential Revision: https://reviews.llvm.org/D63781
llvm-svn: 364998
Add Triple::riscv64 and Triple::riscv32 to getBitcodeMachineKind for get right
e_machine during LTO.
Reviewed By: ruiu, MaskRay
Differential Revision: https://reviews.llvm.org/D52165
llvm-svn: 364996
Fixes PR42442
t.o has a STB_GLOBAL undef ref to f
t2.so has a STB_WEAK undef ref to f
t1.so defines f
ld.lld t.o t1.so t2.so currently sets the binding of `f` to STB_WEAK.
This is not correct because there exists a STB_GLOBAL undef ref from a
regular object. The problem is that resolveUndefined() doesn't check
if the undef ref is seen for the first time:
if (isShared() || isLazy() || (isUndefined() && Other.Binding != STB_WEAK))
Binding = Other.Binding;
The isShared() condition should be `isShared() && !Referenced`
where Referenced is set to true after an undef ref is seen.
In practice, when linking a pthread program with glibc:
// a.o
#include <pthread.h>
pthread_mutex_t mu = PTHREAD_MUTEX_INITIALIZER;
int main() { pthread_mutex_unlock(&mu); }
{clang,gcc} -fuse-ld=lld a.o -lpthread # libpthread.so is linked before libgcc_s.so.1
The weak undef pthread_mutex_unlock in libgcc_s.so.1 makes the result
weak, which diverges from GNU linkers where STB_DEFAULT is used:
23: 0000000000000000 0 FUNC WEAK DEFAULT UND pthread_mutex_lock
(Note, if -pthread is used instead, libpthread.so will be linked **after**
libgcc_s.so.1 . lld sets the binding to the expected STB_GLOBAL)
Similar linking sequences (ld.lld t.o t1.so t2.so) appear to be used by
Go, which cause a build error https://github.com/golang/go/issues/31912.
Reviewed By: grimar, ruiu
Differential Revision: https://reviews.llvm.org/D63974
llvm-svn: 364913
RISC-V psABI doesn't specify TLS relaxation. It can be handled the same
way as we handle ARM TLS. RISC-V TLS is even simpler because GD/LD use
the same relocation type.
Reviewed By: jrtc27, ruiu
Differential Revision: https://reviews.llvm.org/D63220
llvm-svn: 364813
* Handle initial relocation types: R_RISCV_CALL_PLT and R_RISCV_GOT_HI20.
* Produce dynamic relocation types: R_RISCV_COPY, R_RISCV_RELATIVE, R_RISCV_JUMP_SLOT.
* Define SymbolRel as R_RISCV_{32,64}
* Generate PLT header: it is used by lazy binding PLT in glibc.
* R_RISCV_CALL is changed from R_PC to R_PC_PLT. If the target symbol is preemptable, this will suppress an unnecessary "canonical PLT".
This behavior is different from ld.bfd but it is agreed the current lld behavior is favored.
I have received positive responses from the binutils maintainer that the ABI/binutils implementation can be improved, see:
https://github.com/riscv/riscv-elf-psabi-doc/issues/98https://sourceware.org/bugzilla/show_bug.cgi?id=24685
Many -no-pie/-pie/-shared programs linked against musl or glibc should work with this patch.
Reviewed By: jrtc27
Differential Revision: https://reviews.llvm.org/D63076
llvm-svn: 364812
If .rela.plt is mentioned in a linker script, it might be preserved
even if it is empty. In that case, LLD created DT_JMPREL and DT_PLTGOT
dynamic tags. When the tags exist, a dynamic loader writes values into
reserved slots in .got.plt to support lazy symbol resolution.
The problem is that, in fact, the linker has not reserved that space,
and the writing may occur into the memory allocated for something else.
Differential Revision: https://reviews.llvm.org/D63869
llvm-svn: 364639
This restores r361830 "[ELF] Error on relocations to STT_SECTION symbols if the sections were discarded"
and dependent commits (r362218, r362497) which were reverted by r364321, with a fix of a --gdb-index issue.
.rela.debug_ranges contains relocations of range list entries:
// start address of a range list entry
// old: 0; after r361830: 0
00000000000033a0 R_X86_64_64 .text._ZN2v88internal7Isolate7factoryEv + 0
// end address of a range list entry
// old: 0xe; after r361830: 0
00000000000033a8 R_X86_64_64 .text._ZN2v88internal7Isolate7factoryEv + e
If both start and end addresses of a range list entry resolve to 0,
DWARFDebugRangeList::isEndOfListEntry() will return true, then the
.debug_range decoding loop will terminate prematurely:
while (true) {
decode StartAddress
decode EndAddress
if (Entry.isEndOfListEntry()) // prematurely
break;
Entries.push_back(Entry);
}
In lld/ELF/SyntheticSections.cpp, readAddressAreas() will read
incomplete address ranges and the resulting .gdb_index will be
incomplete. For files that gdb hasn't loaded their debug info, gdb uses
.gdb_index to map addresses to CUs. The absent entries make gdb fail to
symbolize some addresses.
To address this issue, we simply allow relocations to undefined symbols
in DWARF.cpp:findAux() and let RelocationResolver resolve them.
This patch should fix:
[1] http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20190603/659848.html
[2] https://bugs.chromium.org/p/chromium/issues/detail?id=978067
llvm-svn: 364391
(In effect, reverting "[ELF] Error on relocations to STT_SECTION symbols if the sections were discarded".)
It caused debug info problems in LibreOffice [1] and Chromium/V8 [2].
Reverting until those can be fixed.
It also reverts r362497 "STT_SECTION symbol should be defined" on .eh_frame, .debug*, .zdebug* and .gcc_except_table"
which was landed as a follow-up to the above.
> With -r or --emit-relocs, we warn `STT_SECTION symbol should be defined`
> on relocations to discarded section symbol. This was added as an error
> in rLLD319404, but was not so effective before D61583 (it turned the
> error to a warning).
>
> Relocations from .eh_frame .debug* .zdebug* .gcc_except_table to
> discarded .text are very common and somewhat expected. Don't warn/error
> on them. As a reference, ld.bfd has a similar logic in
> _bfd_elf_default_action_discarded() to allow these cases.
>
> Delete invalid-undef-section-symbol.test because what it intended to
> check is now covered by the updated comdat-discarded-reloc.s
>
> Delete relocatable-eh-frame.s because we allow relocations from
> .eh_frame as a special case now.
And finally it reverts r362218 "[ELF] Replace a dead test in getSymVA() with assert()"
as that also depended on the main change reverted here.
> Symbols relative to discarded comdat sections are Undefined instead of
> Defined now (after D59649 and D61583). The `== &InputSection::Discarded`
> test becomes dead. I cannot find a test related to this behavior.
[1] http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20190603/659848.html
[2] https://bugs.chromium.org/p/chromium/issues/detail?id=978067
llvm-svn: 364321
r360841 introduced CommonSymbol class. An unintended behavioral change
introduced by that change was that common symbols are not internalized
by LTO under some condition. This patch fixes that issue.
The issue occurred under the following condition:
1. There exists a common symbol
2. At least one DSO is given to lld or -pie is used
If the above conditions are met, Symbol::includeInDynsym() returned a
wrong value for a common symbol.
Fixes https://bugs.llvm.org/show_bug.cgi?id=41978
Differential Revision: https://reviews.llvm.org/D63752
llvm-svn: 364273
Similar to R_AARCH64_ABS32, R_PPC64_ADDR32 can represent either a signed
value or unsigned value, thus we should use `[-2**(n-1), 2**n)` instead of
`[-2**(n-1), 2**(n-1))` to check overflows.
The issue manifests as a bogus linker error when linking the powerpc64le Linux kernel.
The new behavior is compatible with ld.bfd's complain_overflow_bitfield.
The upper bound of the error message is not correct. Fix it as well.
The changes to R_PPC_ADDR16, R_PPC64_ADDR16, R_X86_64_8 and R_X86_64_16 are similar.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D63690
llvm-svn: 364164
Summary:
Our rule to create R_*_RELATIVE for absolute relocation types were
loose. D63121 made it stricter but it failed to create R_*_RELATIVE for
R_ARM_TARGET1 and R_PPC64_TOC. rLLD363236 worked around that by
reinstating the original behavior for ARM and PPC64.
This patch is an attempt to simplify the logic.
Note, in ld.bfd, R_ARM_TARGET2 --target2=abs also creates
R_ARM_RELATIVE. This seems a very uncommon scenario (moreover,
--target2=got-rel is the default), so I do not implement any logic
related to it.
Also, delete R_AARCH64_ABS32 from AArch64::getDynRel. We don't have
working ILP32 support yet. Allowing it would create an incorrect
R_AARCH64_RELATIVE.
For MIPS, the (if SymbolRel, then RelativeRel) code is to keep its
behavior unchanged.
Note, in ppc64-abs64-dyn.s, R_PPC64_TOC gets an incorrect addend because
computeAddend() doesn't compute the correct address. We seem to have the
wrong behavior for a long time. The important thing seems that a dynamic
relocation R_PPC64_TOC should not be created as the dynamic loader will
error R_PPC64_TOC is not supported.
Reviewers: atanasyan, grimar, peter.smith, ruiu, sfertile, espindola
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D63383
llvm-svn: 363928
ARM and RISC-V do not support TLS relaxations. However, for General
Dynamic and Local Dynamic models, if we are producing an executable and
the symbol is non-preemptable, we know it must be defined and the
R_ARM_TLS_DTPMOD32/R_RISCV_TLS_DTPMOD{32,64} dynamic relocation can be
omitted because it is always 1. This may be necessary for static linking
as DTPMOD may not be expected at load time.
Merge handleARMTlsRelocation() into handleTlsRelocation(). This requires
more logic to R_TLSGD_PC and R_TLSLD_PC. Because we use SymbolicRel to
resolve the relocation at link time, R_ARM_TLS_DTPMOD32 can be deleted
from relocateOne(). It cannot be used as a static relocation type.
As a bonus, the additional logic in R_TLSGD_PC code can be shared by the
TLS support for RISC-V (D63220).
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D63333
llvm-svn: 363927
Use -fsave-optimization-record=<format> to specify a different format
than the default, which is YAML.
For now, only YAML is supported.
llvm-svn: 363573
In processRelocAux(), our handling of 1) link-time constant and 2) weak
undef is the same, so put them together to simplify the logic.
This moves the weak undef code around. The result is that: in a writable
section (or -z notext), we will no longer emit dynamic relocations for
weak undefined symbols.
The new behavior seems to match GNU linkers, and improves consistency
with the case of a readonly section.
The condition `!Config->Shared` was there probably because it is common
for a -shared link not to specify full dependencies. Keep it now but we
may revisit the decision in the future.
gABI says:
> The behavior of weak symbols in areas not specified by this document is
> implementation defined. Weak symbols are intended primarily for use in
> system software. Applications using weak symbols are unreliable since
> changes in the runtime environment might cause the execution to fail.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D63003
llvm-svn: 363399
This patch adds new command line option `--undefined-glob` to lld.
That option is a variant of `--undefined` but accepts wildcard
patterns so that all symbols that match with a given pattern are
handled as if they were given by `-u`.
`-u foo` is to force resolve symbol foo if foo is not a defined symbol
and there's a static archive that contains a definition of symbol foo.
Now, you can specify a wildcard pattern as an argument for `--undefined-glob`.
So, if you want to include all JNI symbols (which start with "Java_"), you
can do that by passing `--undefined-glob "Java_*"` to the linker, for example.
In this patch, I use the same glob pattern matcher as the version script
processor is using, so it does not only support `*` but also `?` and `[...]`.
Differential Revision: https://reviews.llvm.org/D63244
llvm-svn: 363396
If .sdata is absent, linker synthesized __global_pointer$ gets a section index of SHN_ABS.
(ld.bfd has a similar issue: binutils PR24678)
Scrt1.o may use `lla gp, __global_pointer$` to reference the symbol PC
relatively. In -pie/-shared mode, lld complains if a PC relative
relocation references an absolute symbol (SHN_ABS) but ld.bfd doesn't:
ld.lld: error: relocation R_RISCV_PCREL_HI20 cannot refer to lute symbol: __global_pointer$
Let the reference of __global_pointer$ to force creation of .sdata to
fix the problem. This is similar to _GLOBAL_OFFSET_TABLE_, which forces
creation of .got or .got.plt .
Also, change the visibility from STV_HIDDEN to STV_DEFAULT and don't
define the symbol for -shared. This matches ld.bfd, though I don't
understand why it uses STV_DEFAULT.
Reviewed By: ruiu, jrtc27
Differential Revision: https://reviews.llvm.org/D63132
llvm-svn: 363351
R_RISCV_{ADD,SET,SUB}* are used for local label computation.
Add a new RelExpr member R_RISCV_ADD to represent them.
R_RISCV_ADD is treated as a link-time constant because otherwise
R_RISCV_{ADD,SET,SUB}* are not allowed in -pie/-shared mode.
In glibc Scrt1.o, .rela.eh_frame contains such relocations.
Because .eh_frame is not writable, we get this error:
ld.lld: error: can't create dynamic relocation R_RISCV_ADD32 against symbol: .L0 in readonly segment; recompil object files with -fPIC or pass '-Wl,-z,notext' to allow text relocations in the output
>>> defined in ..../riscv64-linux-gnu/lib/Scrt1.o
With D63076 and this patch, I can run -pie/-shared programs linked against glibc.
Note llvm-mc cannot currently produce R_RISCV_SET* so they are not tested.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D63183
llvm-svn: 363128
Summary:
clang (as of 2019-06-12) / gcc (as of 8.2.1) PPC64 may emit a .rela.toc
which references an embedded switch table in a discarded .rodata/.text
section. The .toc and the .rela.toc are incorrectly not placed in the
comdat.
Technically a relocation from outside the group is not allowed by the ELF spec:
> A symbol table entry with STB_LOCAL binding that is defined relative
> to one of a group's sections, and that is contained in a symbol table
> section that is not part of the group, must be discarded if the group
> members are discarded. References to this symbol table entry from
> outside the group are not allowed.
Don't report errors to work around the bug.
This should fix the ppc64le-lld-multistage-test bot while linking llvm-tblgen:
ld.lld: error: relocation refers to a discarded section: .rodata._ZNK4llvm3MVT13getSizeInBitsEv
>>> defined in utils/TableGen/CMakeFiles/llvm-tblgen.dir/CodeGenRegisters.cpp.o
>>> referenced by CodeGenRegisters.cpp
>>> utils/TableGen/CMakeFiles/llvm-tblgen.dir/CodeGenRegisters.cpp.o:(.toc+0x0)
Some other PPC specific sections may have similar problems. We can blacklist more
section names when problems occur.
// A simple program that reproduces the bug.
// Note .rela.toc (outside the group) references a section symbol (STB_LOCAL) in a group.
void puts(const char *);
struct A {
void foo(int a) {
switch (a) {
case 0: puts("0"); break;
case 1: puts("1"); puts("1"); break;
case 2: puts("2"); break;
case 3: puts("3"); puts("4"); break;
case 4: puts("4"); break;
case 5: puts("5"); puts("5"); break;
case 6: puts("6"); break;
}
}
int a;
};
void foo(A x) { x.foo(x.a); }
Reviewers: ruiu, sfertile, espindola
Reviewed By: ruiu
Subscribers: emaste, nemanjai, arichardson, kbarton, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63182
llvm-svn: 363126