((x & 0xff00) >> 8) << 2
to
(x >> 6) & 0x3fc
This is general goodness since it folds a left shift into the mask. However,
the trailing zeros in the mask prevents the ARM backend from using the bit
extraction instructions. And worse since the mask materialization may require
an addition instruction. This comes up fairly frequently when the result of
the bit twiddling is used as memory address. e.g.
= ptr[(x & 0xFF0000) >> 16]
We want to generate:
ubfx r3, r1, #16, #8
ldr.w r3, [r0, r3, lsl #2]
vs.
mov.w r9, #1020
and.w r2, r9, r1, lsr #14
ldr r2, [r0, r2]
Add a late ARM specific isel optimization to
ARMDAGToDAGISel::PreprocessISelDAG(). It folds the left shift to the
'base + offset' address computation; change the mask to one which doesn't have
trailing zeros and enable the use of ubfx.
Note the optimization has to be done late since it's target specific and we
don't want to change the DAG normalization. It's also fairly restrictive
as shifter operands are not always free. It's only done for lsh 1 / 2. It's
known to be free on some cpus and they are most common for address
computation.
This is a slight win for blowfish, rijndael, etc.
rdar://12870177
llvm-svn: 170581
To not over constrain the scheduler for ARM in thumb mode, some optimizations for code size reduction, specific to ARM thumb, are blocked when they add a dependency (like write after read dependency).
Disables this check when code size is the priority, i.e., code is compiled with -Oz.
llvm-svn: 170462
instruction.
This isn't strictly necessary at the moment because Thumb2SizeReduction
also copies all MI flags from the old instruction to the new. However, a
future patch will make that kind of direct flag tampering illegal.
llvm-svn: 170395
TargetLowering::getRegClassFor).
Some isSimple() guards were missing, or getSimpleVT() were hoisted too
far, resulting in asserts on valid LLVM assembly input.
llvm-svn: 170336
immediate generates the narrow version. Needed when doing round-trip
assemble/disassemble testing using the alternate syntax that specifies
'pc' directly.
llvm-svn: 170255
Accordingly, add helper funtions getSimpleValueType (in parallel to
getValueType) in SDValue, SDNode, and TargetLowering.
This is the first, in a series of patches.
This is the second attempt. In the first attempt (r169837), a few
getSimpleVT() were hoisted too far, detected by bootstrap failures.
llvm-svn: 170104
Add R_ARM_NONE and R_ARM_PREL31 relocation types
to MCExpr. Both of them will be used while
generating .ARM.extab and .ARM.exidx sections.
llvm-svn: 169965
mention the inline memcpy / memset expansion code is a mess?
This patch split the ZeroOrLdSrc argument into two: IsMemset and ZeroMemset.
The first indicates whether it is expanding a memset or a memcpy / memmove.
The later is whether the memset is a memset of zero. It's totally possible
(likely even) that targets may want to do different things for memcpy and
memset of zero.
llvm-svn: 169959
Also added more comments to explain why it is generally ok to return true.
- Rename getOptimalMemOpType argument IsZeroVal to ZeroOrLdSrc. It's meant to
be true for loaded source (memcpy) or zero constants (memset). The poor name
choice is probably some kind of legacy issue.
llvm-svn: 169954
ScalarTargetTransformInfo::getIntImmCost() instead. "Legal" is a poorly defined
term for something like integer immediate materialization. It is always possible
to materialize an integer immediate. Whether to use it for memcpy expansion is
more a "cost" conceern.
llvm-svn: 169929
Accordingly, add helper funtions getSimpleValueType (in parallel to
getValueType) in SDValue, SDNode, and TargetLowering.
This is the first, in a series of patches.
llvm-svn: 169837
This shouldn't affect codegen for -O0 compiles as tail call markers are not
emitted in unoptimized compiles. Testing with the external/internal nightly
test suite reveals no change in compile time performance. Testing with -O1,
-O2 and -O3 with fast-isel enabled did not cause any compile-time or
execution-time failures. All tests were performed on my x86 machine.
I'll monitor our arm testers to ensure no regressions occur there.
In an upcoming clang patch I will be marking the objc_autoreleaseReturnValue
and objc_retainAutoreleaseReturnValue as tail calls unconditionally. While
it's theoretically true that this is just an optimization, it's an
optimization that we very much want to happen even at -O0, or else ARC
applications become substantially harder to debug.
Part of rdar://12553082
llvm-svn: 169796
1. Teach it to use overlapping unaligned load / store to copy / set the trailing
bytes. e.g. On 86, use two pairs of movups / movaps for 17 - 31 byte copies.
2. Use f64 for memcpy / memset on targets where i64 is not legal but f64 is. e.g.
x86 and ARM.
3. When memcpy from a constant string, do *not* replace the load with a constant
if it's not possible to materialize an integer immediate with a single
instruction (required a new target hook: TLI.isIntImmLegal()).
4. Use unaligned load / stores more aggressively if target hooks indicates they
are "fast".
5. Update ARM target hooks to use unaligned load / stores. e.g. vld1.8 / vst1.8.
Also increase the threshold to something reasonable (8 for memset, 4 pairs
for memcpy).
This significantly improves Dhrystone, up to 50% on ARM iOS devices.
rdar://12760078
llvm-svn: 169791
Before this patch, when you objdump an LLVM-compiled file, objdump tried to
decode data-in-code sections as if they were code. This patch adds the missing
Mapping Symbols, as defined by "ELF for the ARM Architecture" (ARM IHI 0044D).
Patch based on work by Greg Fitzgerald.
llvm-svn: 169609
understand target implementation of any_extend / extload, just generate
zero_extend in place of any_extend for liveouts when the target knows the
zero_extend will be implicit (e.g. ARM ldrb / ldrh) or folded (e.g. x86 movz).
rdar://12771555
llvm-svn: 169536
The encoding of NOP in ARMAsmBackend.cpp is missing a trailing zero, which
causes the emission of a coprocessor instruction rather than "mov r0, r0"
as indicated in the comment. The test also checks for the wrong encoding.
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20121203/157919.html
llvm-svn: 169420
This is for the lldb team so most of but not all of the values are
to be printed as hex with this option. Some small values like the
scale in an X86 address were requested to printed in decimal
without the leading 0x.
There may be some tweaks need to places that may still be in
decimal that they want in hex. Specially for arm. I made my best
guess. Any tweaks from here should be simple.
I also did the best I know now with help from the C++ gurus
creating the cleanest formatImm() utility function and containing
the changes. But if someone has a better idea to make something
cleaner I'm all ears and game for changing the implementation.
rdar://8109283
llvm-svn: 169393
textually as NativeClient. Also added a link to the native client project for
readers unfamiliar with it.
A Clang patch will follow shortly.
llvm-svn: 169291
missed in the first pass because the script didn't yet handle include
guards.
Note that the script is now able to handle all of these headers without
manual edits. =]
llvm-svn: 169224
This provides the same functionality as getRawAllocationOrder() for the
even/odd hints, but without the many constant register arrays.
llvm-svn: 169169
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
Codegen was failing with an assertion because of unexpected vector
operands when legalizing the selection DAG for a MUL instruction.
The asserting code was legalizing multiplies for vectors of size 128
bits. It uses a custom lowering to try and detect cases where it can
use a VMULL instruction instead of a VMOVL + VMUL. The code was
looking for input operands to the MUL that had been sign or zero
extended. If it found the extended operands it would drop the
sign/zero extension and use the original vector size as input to a
VMULL instruction.
The code assumed that the original input vector was 64 bits so that
after dropping the extension it would fit directly into a D register
and could be used as an operand of a VMULL instruction. The input
code that trigger the failure used a vector of <4 x i8> that was
sign extended to <4 x i32>. It was not safe to drop the sign
extension in this case because the original vector is only 32 bits
wide. The fix is to insert a sign extension for the vector to reach
the required 64 bit size. In this particular example, the vector would
need to be sign extented to a <4 x i16>.
llvm-svn: 169024
classes. The vast majority of the remaining issues are due to uses of
invalid registers, which are defined by getRegForValue(). Those will be
a little more challenging to cleanup.
rdar://12719844
llvm-svn: 168735