if we are parsing a template specialization.
This commit makes changes to clear the TemplateParamScope bit and set
the TemplateParamParent field of the current scope to null if a template
specialization is being parsed.
Before this commit, Sema::ActOnStartOfLambdaDefinition would check
whether the parent template scope had any decls to determine whether
or not a template specialization was being parsed. This wasn't correct
since it couldn't distinguish between a real template specialization and
a template defintion with an unnamed template parameter (only template
parameters with names are added to the scope's decl list). To fix the
bug, this commit changes the code to check the pointer to the parent
template scope rather than the decl list.
rdar://problem/23440346
Differential Revision: http://reviews.llvm.org/D19175
llvm-svn: 267975
Remove the floating point to bool conversion warnings. Some of these
conversions will be caught by -Wliteral-conversion and -Wfloat-conversion
llvm-svn: 267234
Restructure the implict floating point to integer conversions so that
interesting sub-groups are under different flags. Breakdown of warnings:
No warning:
Exact conversions from floating point to integer:
int x = 10.0;
int x = 1e10;
-Wliteral-conversion - Floating point literal to integer with rounding:
int x = 5.5;
int x = -3.4;
-Wfloat-conversion - All conversions not covered by the above two:
int x = GetFloat();
int x = 5.5 + 3.5;
-Wfloat-zero-conversion - The expression converted has a non-zero floating
point value that gets converted to a zero integer value, excluded the cases
falling under -Wliteral-conversion. Subset of -Wfloat-conversion.
int x = 1.0 / 2.0;
-Wfloat-overflow-conversion - The floating point value is outside the range
of the integer type, exluding cases from -Wliteral conversion. Subset of
-Wfloat-conversion.
char x = 500;
char x = -1000;
-Wfloat-bool-conversion - Any conversion of a floating point type to bool.
Subset of -Wfloat-conversion.
if (GetFloat()) {}
bool x = 5.0;
-Wfloat-bool-constant-conversion - Conversion of a compile time evaluatable
floating point value to bool. Subset of -Wfloat-bool-conversion.
bool x = 1.0;
bool x = 4.0 / 20.0;
Also add EvaluateAsFloat to Sema, which is similar to EvaluateAsInt, but for
floating point values.
llvm-svn: 267054
With this patch compiler emits warning if it tries to make implicit instantiation
of a template but cannot find the template definition. The warning can be suppressed
by explicit instantiation declaration or by command line options
-Wundefined-var-template and -Wundefined-func-template. The implementation follows
the discussion of http://reviews.llvm.org/D12326.
Differential Revision: http://reviews.llvm.org/D16396
llvm-svn: 266719
Summary: A program shall not declare an explicit instantiation (14.8.2), an explicit specialization (14.8.3), or a partial specialization of a concept definition.
Reviewers: rsmith, hubert.reinterpretcast, faisalv, aaron.ballman
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D18221
llvm-svn: 265868
Implement lambda capture of *this by copy.
For e.g.:
struct A {
int d = 10;
auto foo() { return [*this] (auto a) mutable { d+=a; return d; }; }
};
auto L = A{}.foo(); // A{}'s lifetime is gone.
// Below is still ok, because *this was captured by value.
assert(L(10) == 20);
assert(L(100) == 120);
If the capture was implicit, or [this] (i.e. *this was captured by reference), this code would be otherwise undefined.
Implementation Strategy:
- amend the parser to accept *this in the lambda introducer
- add a new king of capture LCK_StarThis
- teach Sema::CheckCXXThisCapture to handle by copy captures of the
enclosing object (i.e. *this)
- when CheckCXXThisCapture does capture by copy, the corresponding
initializer expression for the closure's data member
direct-initializes it thus making a copy of '*this'.
- in codegen, when assigning to CXXThisValue, if *this was captured by
copy, make sure it points to the corresponding field member, and
not, unlike when captured by reference, what the field member points
to.
- mark feature as implemented in svn
Much gratitude to Richard Smith for his carefully illuminating reviews!
llvm-svn: 263921
If we import a module that has a complete array type and one that has an
incomplete array type, the declaration found by name lookup might be the one with
the incomplete type, possibly resulting in rejects-valid.
Now, the name lookup prefers decls with a complete array types. Also,
diagnose cases when the redecl chain has array bound, different from the merge
candidate.
Reviewed by Richard Smith.
llvm-svn: 262189
C++11 requires const objects to have a user-provided constructor, even for
classes without any fields. DR 253 relaxes this to say "If the implicit default
constructor initializes all subobjects, no initializer should be required."
clang is currently the only compiler that implements this C++11 rule, and e.g.
libstdc++ relies on something like DR 253 to compile in newer versions. This
change makes it possible to build code that says `const vector<int> v;' again
when using libstdc++5.2 and _GLIBCXX_DEBUG
(https://gcc.gnu.org/bugzilla/show_bug.cgi?id=60284).
Fixes PR23381.
http://reviews.llvm.org/D16552
llvm-svn: 261297
diagnosing when 'concept' is specified on a function or template
specialization.
Since a concept can only be applied to a function or variable template,
the concept bit is stored in TemplateDecl as a PointerIntPair.
Reviewers: rsmith, faisalv, aaron.ballman, hubert.reinterpretcast
Differential Revision: http://reviews.llvm.org/D13357
llvm-svn: 260074
Fix the issue discovered by fuzzing (PR23057, comment 18) by handling nullptr in Sema::ActOnCXXForRangeDecl
and correct delayed typos in for-range expression before calling Sema::ActOnCXXForRangeStmt. Also fixes PR26288.
Differential Revision: http://reviews.llvm.org/D16630
llvm-svn: 259532
Switch the evaluation from isIntegerConstantExpr to EvaluateAsInt.
EvaluateAsInt will evaluate more types of expressions than
isIntegerConstantExpr.
Move one case from -Wsign-conversion to -Wconstant-conversion. The case is:
1) Source and target types are signed
2) Source type is wider than the target type
3) The source constant value is positive
4) The conversion will store the value as negative in the target.
llvm-svn: 259271
Diagnose if the return type of a function concept or declaration type of a
variable concept is not bool.
Reviewers: hubert.reinterpretcast
Differential Revision: http://reviews.llvm.org/D16163
llvm-svn: 259159
into IDNS_Tag in C++, because they conflict with redeclarations of tags. (This
doesn't affect elaborated-type-specifier lookup, which looks for IDNS_Type in
C++).
llvm-svn: 256985
endings, since the file is supposed to have them, according to its
comments. Also set its svn:eol-style property. Noticed by Nico Weber.
llvm-svn: 256742
Summary:
There are a number of files in the tree which have been accidentally checked in with DOS line endings. Convert these to native line endings.
There are also a few files which have DOS line endings on purpose, and I have set the svn:eol-style property to 'CRLF' on those.
Reviewers: joerg, aaron.ballman
Subscribers: aaron.ballman, cfe-commits
Differential Revision: http://reviews.llvm.org/D15849
llvm-svn: 256704
by overload resolution because deduction succeeds, but the substituted
parameter type for some parameter (with deduced type) doesn't exactly match the
corresponding adjusted argument type.
llvm-svn: 256657
It resolves clang selfhosting with std::once() for Cygwin.
FIXME: It may be EmulatedTLS-generic also for X86-Android.
FIXME: Pass EmulatedTLS to LLVM CodeGen from Clang with -femulated-tls.
llvm-svn: 256134
have a nested name specifier. Strictly speaking, forward declarations of class
template partial specializations are not permitted at all, but that seems like
an obvious wording defect, and if we allow them without a nested name specifier
we should also allow them with a nested name specifier.
llvm-svn: 255383
https://llvm.org/bugs/show_bug.cgi?id=24694http://wg21.link/cwg1591
Teach DeduceFromInitializerList in SemaTemplateDeduction.cpp to deduce against array (constant and dependent sized) parameters (really, reference to arrays since they don't decay to pointers), by checking if the template parameter is either one of those kinds of arrays, and if so, deducing each initializer list element against the element type, and then deducing the array bound if needed.
In brief, this patch enables the following code:
template<class T, int N> int *f(T (&&)[N]);
int *ip = f({1, 2, 3});
llvm-svn: 255221
This is the 5th Lit test patch.
Expanded expected diagnostics to vary by C++ dialect.
Expanded RUN line to: default, C++98/03 and C++11.
llvm-svn: 255196
do scope-based lookup when looking for redeclarations of them. Add some related
missing checks for the scope-based redeclaration lookup: properly filter the
list of found declarations to match the scope, and diagnose shadowing of a
template parameter name.
llvm-svn: 254663
side-effect, so that we don't allow speculative evaluation of such expressions
during code generation.
This caused a diagnostic quality regression, so fix constant expression
diagnostics to prefer either the first "can't be constant folded" diagnostic or
the first "not a constant expression" diagnostic depending on the kind of
evaluation we're doing. This was always the intent, but didn't quite work
correctly before.
This results in certain initializers that used to be constant initializers to
no longer be; in particular, things like:
float f = 1e100;
are no longer accepted in C. This seems appropriate, as such constructs would
lead to code being executed if sanitizers are enabled.
llvm-svn: 254574
This patch emits a more appropriate (but still noisy) diagnostic stream when a lambda-expression is encountered within a non-type default argument.
For e.g. template<int N = ([] { return 5; }())> int f();
As opposed to complaining that a lambda expression is not allowed in an unevaluated operand, the patch complains about the lambda being forbidden in a constant expression context (which will be allowed in C++17 now that they have been accepted by EWG, unless of course CWG or national bodies (that have so far shown no signs of concern) rise in protest)
As I start submitting patches for constexpr lambdas (http://wg21.link/P0170R0) under C++1z (OK'd by Richard Smith at Kona), this will be one less change to make.
Thanks!
llvm-svn: 253431
DR407, the C++ standard doesn't really say how this should work. Here's what we
do (which is consistent with DR407 as far as I can tell):
* When performing name lookup for an elaborated-type-specifier, a tag
declaration hides a typedef declaration that names the same type.
* When performing any other kind of lookup, a typedef declaration hides
a tag declaration that names the same type.
In any other case where lookup finds both a typedef and a tag (that is, when
they name different types), the lookup will be ambiguous. If lookup finds a
tag and a typedef that name the same type, and finds anything else, the lookup
will always be ambiguous (even if the other entity would hide the tag, it does
not also hide the typedef).
llvm-svn: 252959