Not folding these cases tends to avoid partial register updates:
sqrtss (%eax), %xmm0
Has a partial update of %xmm0, while
movss (%eax), %xmm0
sqrtss %xmm0, %xmm0
Has a clobber of the high lanes immediately before the partial update,
avoiding a potential stall.
Given this, we only want to fold when optimizing for size.
This is consistent with the patterns we already have for some of
the fp/int converts, and in X86InstrInfo::foldMemoryOperandImpl()
Differential Revision: http://reviews.llvm.org/D15741
llvm-svn: 256671
autogenerated.
Also update existing test cases which appear to be generated by it and
weren't modified (other than addition of the header) by rerunning it.
llvm-svn: 253917
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
X86 load folding is fragile; eg, the tests here
don't work without AVX even though they should. This
is because we have a mix of tablegen patterns that have
been added over time, and we have a load folding table
used by the peephole optimizer that has to be kept in
sync with the ever-changing ISA and tablegen defs.
llvm-svn: 229870