The static analyzer is warning about a potential null dereference, but we should be able to use cast<> directly and if not assert will fire for us.
llvm-svn: 375427
The static analyzer is warning about a potential null dereference, but we should be able to use cast<> directly and if not assert will fire for us.
llvm-svn: 375426
Commit message from D66935:
This patch fixes a bug exposed by D65653 where a subsequent invocation
of `determineCalleeSaves` ends up with a different size for the callee
save area, leading to different frame-offsets in debug information.
In the invocation by PEI, `determineCalleeSaves` tries to determine
whether it needs to spill an extra callee-saved register to get an
emergency spill slot. To do this, it calls 'estimateStackSize' and
manually adds the size of the callee-saves to this. PEI then allocates
the spill objects for the callee saves and the remaining frame layout
is calculated accordingly.
A second invocation in LiveDebugValues causes estimateStackSize to return
the size of the stack frame including the callee-saves. Given that the
size of the callee-saves is added to this, these callee-saves are counted
twice, which leads `determineCalleeSaves` to believe the stack has
become big enough to require spilling an extra callee-save as emergency
spillslot. It then updates CalleeSavedStackSize with a larger value.
Since CalleeSavedStackSize is used in the calculation of the frame
offset in getFrameIndexReference, this leads to incorrect offsets for
variables/locals when this information is recalculated after PEI.
This patch fixes the lldb unit tests in `functionalities/thread/concurrent_events/*`
Changes after D66935:
Ensures AArch64FunctionInfo::getCalleeSavedStackSize does not return
the uninitialized CalleeSavedStackSize when running `llc` on a specific
pass where the MIR code has already been expected to have gone through PEI.
Instead, getCalleeSavedStackSize (when passed the MachineFrameInfo) will try
to recalculate the CalleeSavedStackSize from the CalleeSavedInfo. In debug
mode, the compiler will assert the recalculated size equals the cached
size as calculated through a call to determineCalleeSaves.
This fixes two tests:
test/DebugInfo/AArch64/asan-stack-vars.mir
test/DebugInfo/AArch64/compiler-gen-bbs-livedebugvalues.mir
that otherwise fail when compiled using msan.
Reviewed By: omjavaid, efriedma
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68783
llvm-svn: 375425
When building a precompiled header in -fmodule-format=obj (i.e.,
`-gmodules) in an absolute path, the locig in
CGDebugInfo::createCompileUnit would unconditionally append the source
directory to the -main-file-name. This patch avoids that behavior for
absolute paths.
rdar://problem/46045865
Differential Revision: https://reviews.llvm.org/D69213
llvm-svn: 375423
This is designed to change the bitwidth of a type without altering the number
of vector lanes. Also useful in D68651. Otherwise an NFC.
Differential Revision: https://reviews.llvm.org/D69139
llvm-svn: 375417
Summary:
After D69041, we no longer have to manually remove the .symtab section
once yaml2obj was run.
Reviewers: espindola, alexshap
Subscribers: emaste, arichardson, MaskRay, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D69254
llvm-svn: 375415
This adds some new qdadd patterns to go along with the other recently added
qadd's.
Differential Revision: https://reviews.llvm.org/D68999
llvm-svn: 375414
The llvm-ar command guide had not been updated in some time, it was
missing current functionality and contained information that was out
of date. This change:
- Updates the use of reStructuredText directives, as seen in other tools
command guides.
- Updates the command synopsis.
- Updates the descriptions of the tool behaviour.
- Updates the options section.
- Adds details of MRI script functionality.
- Removes the sections "Standards" and "File Format"
Differential Revision: https://reviews.llvm.org/D68998
llvm-svn: 375412
This lowers a sadd_sat to a qadd by treating it as legal. Also adds qsub at the
same time.
The qadd instruction sets the q flag, but we already have many cases where we
do not model this in llvm.
Differential Revision: https://reviews.llvm.org/D68976
llvm-svn: 375411
In some cases using the return value of setFPAttrs simplifies the code.
In other cases it complicates the code with ugly casts, so stop doing
it. NFC.
llvm-svn: 375409
It returns just a section_iterator currently and have a report_fatal_error call inside.
This change adds a way to return errors and handle them on caller sides.
The patch also changes/improves current users and adds test cases.
Differential revision: https://reviews.llvm.org/D69167
llvm-svn: 375408
We have a following code to find quote type:
if (isspace(S.front()) || isspace(S.back()))
...
Problem is that:
"int isspace( int ch ): The behavior is undefined if the value of
ch is not representable as unsigned char and is not equal to EOF."
(https://en.cppreference.com/w/cpp/string/byte/isspace)
This patch shows how this UB can be triggered and fixes an issue.
Differential revision: https://reviews.llvm.org/D69160
llvm-svn: 375404
Summary:
When MemCpyOpt is handling aggregate type values, if an instruction (let's call it P) between the targeting load (L) and store (S) clobbers the source pointer of L, it will try to hoist S before P. This process will also hoist S's data dependency instructions.
However, the current implementation has a bug that if one of S's dependency instructions is //also// a user of P, MemCpyOpt will not prevent it from being hoisted above P and cause a use-before-define error. For example, in the newly added test file (i.e. `aggregate-type-crash.ll`), it will try to hoist both `store %my_struct %1, %my_struct* %3` and its dependent, `%3 = bitcast i8* %2 to %my_struct*`, above `%2 = call i8* @my_malloc(%my_struct* %0)`. Creating the following BB:
```
entry:
%1 = bitcast i8* %4 to %my_struct*
%2 = bitcast %my_struct* %1 to i8*
%3 = bitcast %my_struct* %0 to i8*
call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 %2, i8* align 4 %3, i64 8, i1 false)
%4 = call i8* @my_malloc(%my_struct* %0)
ret void
```
Where there is a use-before-define error between `%1` and `%4`.
Update: The compiler for the Pony Programming Language [also encounter the same bug](https://github.com/ponylang/ponyc/issues/3140)
Patch by Min-Yih Hsu (myhsu)
Reviewers: eugenis, pcc, dblaikie, dneilson, t.p.northover, lattner
Reviewed By: eugenis
Subscribers: lenary, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66060
llvm-svn: 375403
Lower the target independent signed saturating intrinsics to qadd8 and qadd16.
This custom lowers them from a sadd_sat, catching the node early before it is
promoted. It also adds a QADD8b and QADD16b node to mean the bottom "lane" of a
qadd8/qadd16, so that we can call demand bits on it to show that it does not
use the upper bits.
Also handles QSUB8 and QSUB16.
Differential Revision: https://reviews.llvm.org/D68974
llvm-svn: 375402
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, dschuff, jyknight, sdardis, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, fedor.sergeev, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69216
llvm-svn: 375398
Summary:
Allow for ignoring the check for a single use in SimplifyDemandedVectorElts
to be able to simplify operands if DemandedElts is known to contain
the union of elements used by all users.
It is a responsibility of a caller of SimplifyDemandedVectorElts to
supply correct DemandedElts.
Simplify a series of extractelement instructions if only a subset of
elements is used.
Reviewers: reames, arsenm, majnemer, nhaehnle
Reviewed By: nhaehnle
Subscribers: wdng, jvesely, nhaehnle, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67345
llvm-svn: 375395
As we now have code that parses the dwarf info for variable locations,
we can use that instead of relying on the higher level Symbolizer library,
reducing the previous two different dwarf codepaths into one.
Differential Revision: https://reviews.llvm.org/D69198
llvm-svn: 375391
Current implementation of Instruction::mayReadFromMemory()
returns !doesNotAccessMemory() which is !ReadNone. This
does not take into account that the writeonly attribute
also indicates that the call does not read from memory.
The patch changes the predicate to !doesNotReadMemory()
that reflects the intended behavior.
Differential Revision: https://reviews.llvm.org/D69086
llvm-svn: 375389
Currently, for indirect call, the assembly code printed out as
callx <imm>
This is not right, it should be
callx <reg>
Fixed the issue with proper format.
Differential Revision: https://reviews.llvm.org/D69229
llvm-svn: 375386
AAReturnedValues, AAMemoryBehavior, and AANoUnwind, can provide
information that helps during the tracking or even justifies no-capture.
We now use this information and enable no-capture in some test cases
designed a long while a ago for these cases.
llvm-svn: 375382
We can end up with two loop exits whose exit counts are equivalent, but whose textual representation is different and non-obvious. For the sub-case where we have a series of exits which dominate one another (common), eliminate any exits which would iterate *after* a previous exit on the exiting iteration.
As noted in the TODO being removed, I'd always thought this was a good idea, but I've now seen this in a real workload as well.
Interestingly, in review, Nikita pointed out there's let another oppurtunity to leverage SCEV's reasoning. If we kept track of the min of dominanting exits so far, we could discharge exits with EC >= MDE. This is less powerful than the existing transform (since later exits aren't considered), but potentially more powerful for any case where SCEV can prove a >= b, but neither a == b or a > b. I don't have an example to illustrate that oppurtunity, but won't be suprised if we find one and return to handle that case as well.
Differential Revision: https://reviews.llvm.org/D69009
llvm-svn: 375379
In this pattern, all the "magic" bits that we'd `add` are all
high sign bits, and in the value we'd be adding to they are all unset,
not unexpectedly, so we can have an `or` there:
https://rise4fun.com/Alive/ups
It is possible that `haveNoCommonBitsSet()` should be taught about this
pattern so that we never have an `add` variant, but the reasoning would
need to be recursive (because of that `select`), so i'm not really sure
that would be worth it just yet.
llvm-svn: 375378
In this pattern, all the "magic" bits that we'd add are all
high sign bits, and in the value we'd be adding to they are all unset,
not unexpectedly, so we can have an `or` there:
https://rise4fun.com/Alive/ups
llvm-svn: 375377
This adds folds for comparing uadd.sat/usub.sat with zero:
* uadd.sat(a, b) == 0 => a == 0 && b == 0 => (a | b) == 0
* usub.sat(a, b) == 0 => a <= b
And inverted forms for !=.
Differential Revision: https://reviews.llvm.org/D69224
llvm-svn: 375374
Summary:
This problem consists of several parts:
* Basic sign bit extraction - `trunc? (?shr %x, (bitwidth(x)-1))`.
This is trivial, and easy to do, we have a fold for it.
* Shift amount reassociation - if we have two identical shifts,
and we can simplify-add their shift amounts together,
then we likely can just perform them as a single shift.
But this is finicky, has one-use restrictions,
and shift opcodes must be identical.
But there is a super-pattern where both of these work together.
to produce sign bit test from two shifts + comparison.
We do indeed already handle this in most cases.
But since we get that fold transitively, it has one-use restrictions.
And what's worse, in this case the right-shifts aren't required to be
identical, and we can't handle that transitively:
If the total shift amount is bitwidth-1, only a sign bit will remain
in the output value. But if we look at this from the perspective of
two shifts, we can't fold - we can't possibly know what bit pattern
we'd produce via two shifts, it will be *some* kind of a mask
produced from original sign bit, but we just can't tell it's shape:
https://rise4fun.com/Alive/cM0https://rise4fun.com/Alive/9IN
But it will *only* contain sign bit and zeros.
So from the perspective of sign bit test, we're good:
https://rise4fun.com/Alive/FRzhttps://rise4fun.com/Alive/qBU
Superb!
So the simplest solution is to extend `reassociateShiftAmtsOfTwoSameDirectionShifts()` to also have a
sudo-analysis mode that will ignore extra-uses, and will only check
whether a) those are two right shifts and b) they end up with bitwidth(x)-1
shift amount and return either the original value that we sign-checking,
or null.
This does not have any functionality change for
the existing `reassociateShiftAmtsOfTwoSameDirectionShifts()`.
All that being said, as disscussed in the review, this yet again
increases usage of instsimplify in instcombine as utility.
Some day that may need to be reevaluated.
https://bugs.llvm.org/show_bug.cgi?id=43595
Reviewers: spatel, efriedma, vsk
Reviewed By: spatel
Subscribers: xbolva00, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68930
llvm-svn: 375371