This was reverted in r360086 as it was supected of causing mysterious test
failures internally. However, it was never concluded that this patch was the
root cause.
> The code was previously checking that candidates for sinking had exactly
> one use or were a store instruction (which can't have uses). This meant
> we could sink call instructions only if they had a use.
>
> That limitation seemed a bit arbitrary, so this patch changes it to
> "instruction has zero or one use" which seems more natural and removes
> the need to special-case stores.
>
> Differential revision: https://reviews.llvm.org/D59936
llvm-svn: 361811
Rather than gating on "isSwitchDense" (resulting in necessesarily
sparse lookup tables even when they were generated), always run
this quite cheap transform.
This transform is useful not just for generating tables.
LowerSwitch also wants this: read LowerSwitch.cpp:257.
Be careful to not generate worse code, by introducing a
SubThreshold heuristic.
Instead of just sorting by signed, generalize the finding of the
best base.
And now that it is run unconditionally, do not replicate its
functionality in SwitchToLookupTable (which could use a Sub
when having a hole is smaller, hence the SubThreshold
heuristic located in a single place).
This simplifies SwitchToLookupTable, and fixes
some ugly corner cases due to the use of signed numbers,
such as a table containing i16 32768 and 32769, of which
32769 would be interpreted as -32768, and now the code thinks
the table is size 65536.
(We still use unconditional subtraction when building a single-register mask,
but I think this whole block should go when the more general sparse
map is added, which doesn't leave empty holes in the table.)
And the reason test4 and test5 did not trigger was documented wrong:
it was because they were not considered sufficiently "dense".
Also, fix generation of invalid LLVM-IR: shl by bit-width.
llvm-svn: 361727
and replace with an equilivent countTrailingZeros.
GCD is much more expensive than this, with repeated division.
This depends on D60823
llvm-svn: 361726
This matches countLeadingOnes() and countTrailingOnes(), and
APInt's countLeadingZeros() and countTrailingZeros().
(as well as __builtin_clzll())
llvm-svn: 361724
This reverts commit rr360902. It caused an assertion failure in
lib/IR/DebugInfoMetadata.cpp: Assertion `(OffsetInBits + SizeInBits <=
FragmentSizeInBits) && "new fragment outside of original fragment"'
failed.
PR41931.
llvm-svn: 361246
This reverts commit 95805bc425.
I've squashed the test fix into this commit.
[DebugInfo] Update loop metadata for inlined loops
Currently, when a loop is cloned while inlining function (A) into function (B)
the loop metadata is copied and then not modified at all. The loop metadata can
encode the loop's start and end DILocations. Therefore, the new inlined loop in
function (B) may have loop metadata which shows start and end locations residing
in function (A).
This patch ensures loop metadata is updated while inlining so that the start and
end DILocations are given the "inlinedAt" operand. I've also added a regression
test for this.
This fix is required for D60831 because that patch uses loop metadata to
determine the DILocation for the branches of new loop preheaders.
Reviewers: aprantl, dblaikie, anemet
Reviewed By: aprantl
Subscribers: eraman, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D61933
llvm-svn: 361149
Refactor DIExpression::With* into a flag enum in order to be less
error-prone to use (as discussed on D60866).
Patch by Djordje Todorovic.
Differential Revision: https://reviews.llvm.org/D61943
llvm-svn: 361137
Summary:
Currently, when a loop is cloned while inlining function (A) into function (B) the loop metadata is copied and then not modified at all. The loop metadata can encode the loop's start and end DILocations. Therefore, the new inlined loop in function (B) may have loop metadata which shows start and end locations residing in function (A).
This patch ensures loop metadata is updated while inlining so that the start and end DILocations are given the "inlinedAt" operand. I've also added a regression test for this.
This fix is required for D60831 because that patch uses loop metadata to determine the DILocation for the branches of new loop preheaders.
Reviewers: aprantl, dblaikie, anemet
Reviewed By: aprantl
Subscribers: eraman, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D61933
llvm-svn: 361132
Fixes issue: https://bugs.llvm.org/show_bug.cgi?id=40645
Previously, LLVM had no functional way of performing casts inside of a
DIExpression(), which made salvaging cast instructions other than Noop casts
impossible. With the recent addition of DW_OP_LLVM_convert this salvaging is
now possible, and so can be used to fix the attached bug as well as any cases
where SExt instruction results are lost in the debugging metadata. This patch
introduces this fix by expanding the salvage debug info method to cover these
cases using the new operator.
Differential revision: https://reviews.llvm.org/D61184
llvm-svn: 360902
Summary: We should excluded unreachable operands from processing as their DFS visitation order is undefined. When `renameUses` function sorts `OpsToRename` (https://fburl.com/d2wubn60), the comparator assumes that the parent block of the operand has a corresponding dominator tree node. This is not the case for unreachable operands and crashes the compiler.
Reviewers: dberlin, mgrang, davide
Subscribers: efriedma, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61154
llvm-svn: 360796
Fixes issue: https://bugs.llvm.org/show_bug.cgi?id=40645
Previously, LLVM had no functional way of performing casts inside of a
DIExpression(), which made salvaging cast instructions other than Noop
casts impossible. With the recent addition of DW_OP_LLVM_convert this
salvaging is now possible, and so can be used to fix the attached bug as
well as any cases where SExt instruction results are lost in the
debugging metadata. This patch introduces this fix by expanding the
salvage debug info method to cover these cases using the new operator.
Differential revision: https://reviews.llvm.org/D61184
llvm-svn: 360772
The 3-field form was introduced by D3499 in 2014 and the legacy 2-field
form was planned to be removed in LLVM 4.0
For the textual format, this patch migrates the existing 2-field form to
use the 3-field form and deletes the compatibility code.
test/Verifier/global-ctors-2.ll checks we have a friendly error message.
For bitcode, lib/IR/AutoUpgrade UpgradeGlobalVariables will upgrade the
2-field form (add i8* null as the third field).
Reviewed By: rnk, dexonsmith
Differential Revision: https://reviews.llvm.org/D61547
llvm-svn: 360742
LoopSimplify can preserve MemorySSA after r360270.
But the MemorySSA analysis is retrieved and preserved only when the
EnableMSSALoopDependency is set to true. Use the same conditional to
mark the pass as preserved, otherwise subsequent passes will get an
invalid analysis.
Resolves PR41853.
llvm-svn: 360697
In certain circumstances, optimizations pick line numbers from debug
intrinsic instructions as the new location for altered instructions. This
is problematic because the line number of a debugging intrinsic is
meaningless (it doesn't produce any machine instruction), only the scope
information is valid. The result can be the line number of a variable
declaration "leaking" into real code from debugging intrinsics, making the
line table un-necessarily jumpy, and potentially different with / without
variable locations.
Fix this by using zero line numbers when promoting dbg.declare intrinsics
into dbg.values: this is safe for debug intrinsics as their line numbers
are meaningless, and reduces the scope for damage / misleading stepping
when optimizations pick locations from the wrong place.
Differential Revision: https://reviews.llvm.org/D59272
llvm-svn: 360415
Summary:
Seeing some issues for windows debug pathological cases with collectBitParts
recursion (1525 levels of recursion!)
Setting the limit to 64 as this should be sufficient - passes all lit cases
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61728
Change-Id: I7f44cdc6c1badf1c2ccbf1b0c4b6afe27ecb39a1
llvm-svn: 360347
Summary:
Preserve MemorySSA in LoopSimplify, in the old pass manager, if the analysis is available.
Do not preserve it in the new pass manager.
Update tests.
Subscribers: nemanjai, jlebar, javed.absar, Prazek, kbarton, zzheng, jsji, llvm-commits, george.burgess.iv, chandlerc
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60833
llvm-svn: 360270
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024
The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:
A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.
In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.
Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel
Reviewed By: hfinkel
Subscribers: bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D60831
llvm-svn: 360162
This reverts r357452 (git commit 21eb771dcb).
This was causing strange optimization-related test failures on an internal test. Will followup with more details offline.
llvm-svn: 360086
Summary:
There is `Instruction::getNumSuccessors()`, `Instruction::getSuccessor()`
and `Instruction::setSuccessor()`, but no function to replace every
specified `BasicBlock*` successor with some other specified `BasicBlock*`.
I've found one place where it should clearly be used.
Reviewers: chandlerc, craig.topper, spatel, danielcdh
Reviewed By: craig.topper
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61010
llvm-svn: 359994
Summary:
If `deleteDeadLoop()` is called on such a loop, that has "bad" exit block,
one that e.g. has no terminator instruction, the `DIBuilder::insertDbgValueIntrinsic()`
will be told to insert the Dbg Value Intrinsic after `nullptr`
(since there is no first non-PHI instruction), which will cause it to not insert
those instructions into any basic block. The instructions will be parent-less,
and IR verifier will complain. It is rather obvious to track down the root cause
when that happens, so let's just assert it never happens.
Reviewers: sanjoy, davide, vsk
Reviewed By: vsk
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61008
llvm-svn: 359993
When evaluating a store through a bitcast, the evaluator tries to move the
bitcast from the pointer onto the stored value. If the cast is invalid, it
tries to "introspect" the type to get a valid cast by obtaining a pointer to
the initial element (if the type is nested, this may require walking several
initial elements).
In some situations it is possible to get a bitcast on a load (e.g. with
unions, where the bitcast may not be the same type as the store). However,
equivalent logic to the store to introspect the type is missing. This patch
add this logic.
Note, when developing the patch I was unhappy with adding similar logic
directly to the load case as it could get out of step. Instead, I have
abstracted the "introspection" into a helper function, with the specifics
being handled by a passed-in lambda function.
Differential Revision: https://reviews.llvm.org/D60793
llvm-svn: 359205
Summary:
Both the input Value pointer and the returned Value
pointers in GetUnderlyingObjects are now declared as
const.
It turned out that all current (in-tree) uses of
GetUnderlyingObjects were trivial to update, being
satisfied with have those Value pointers declared
as const. Actually, in the past several of the users
had to use const_cast, just because of ValueTracking
not providing a version of GetUnderlyingObjects with
"const" Value pointers. With this patch we get rid
of those const casts.
Reviewers: hfinkel, materi, jkorous
Reviewed By: jkorous
Subscribers: dexonsmith, jkorous, jholewinski, sdardis, eraman, hiraditya, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61038
llvm-svn: 359072
Summary:
Enabling MemorySSA in the old pass manager leads to MemorySSA being run
twice due to the fact that LCSSA and LoopSimplify do not preserve
MemorySSA. This is the first step to address that: target LCSSA.
LCSSA does not make any changes that invalidate MemorySSA, so it
preserves it by design. It must preserve AA as well, for this to hold.
After this patch, MemorySSA is still run twice in the old pass manager.
Step two follows: target LoopSimplify.
Subscribers: mehdi_amini, jlebar, Prazek, llvm-commits, george.burgess.iv, chandlerc
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60832
llvm-svn: 359032
Currently, we do not expose BPI to loop passes at all. In the old pass manager, we appear to have been ignoring the fact that LCSSA and/or LoopSimplify didn't preserve BPI, and making it available to the following loop passes anyways. In the new one, it's invalidated before running any loop pass if either LCSSA or LoopSimplify actually make changes. If they don't make changes, then BPI is valid and available. So, we go ahead and teach LCSSA and LoopSimplify how to preserve BPI for consistency between old and new pass managers.
This patch avoids an invalidation between the two requires in the following trivial pass pipeline:
opt -passes="requires<branch-prob>,loop(no-op-loop),requires<branch-prob>"
(when the input file is one which requires either LCSSA or LoopSimplify to canonicalize the loops)
Differential Revision: https://reviews.llvm.org/D60790
llvm-svn: 358901
code to `CallBase`.
This patch focuses on the legacy PM, call graph, and some of inliner and legacy
passes interacting with those APIs from `CallSite` to the new `CallBase` class.
No interesting changes.
Differential Revision: https://reviews.llvm.org/D60412
llvm-svn: 358739
The original commit caused false positives from AddressSanitizer's
use-after-scope checks, which have now been fixed in r358478.
> The code was previously checking that candidates for sinking had exactly
> one use or were a store instruction (which can't have uses). This meant
> we could sink call instructions only if they had a use.
>
> That limitation seemed a bit arbitrary, so this patch changes it to
> "instruction has zero or one use" which seems more natural and removes
> the need to special-case stores.
>
> Differential revision: https://reviews.llvm.org/D59936
llvm-svn: 358483
The CodeExtractor is not smart enough to compute which basic block is
the entry of a region. Instead it relies on the order of the list
of basic blocks that is handed to it and assumes that the entry
is the first block in the list.
Without the additional debug information, it is hard to understand
why a valid region does not get extracted, because we would miss
that the order of in the list just doesn't match what the CodeExtractor
wants.
NFC
llvm-svn: 358471
Zexts can be treated like no-op casts when it comes to assessing whether their
removal affects debug info.
Reviewer: aprantl
Differential Revision: https://reviews.llvm.org/D60641
llvm-svn: 358431
Summary:
Enable some of the existing size optimizations for cold code under PGO.
A ~5% code size saving in big internal app under PGO.
The way it gets BFI/PSI is discussed in the RFC thread
http://lists.llvm.org/pipermail/llvm-dev/2019-March/130894.html
Note it doesn't currently touch loop passes.
Reviewers: davidxl, eraman
Reviewed By: eraman
Subscribers: mgorny, javed.absar, smeenai, mehdi_amini, eraman, zzheng, steven_wu, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59514
llvm-svn: 358422
Summary:
Factor out findAllocaForValue() from ASan so that we can use it in
MSan to handle lifetime intrinsics.
Reviewers: eugenis, pcc
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60615
llvm-svn: 358380
* Rearrange continu/break
* BBNumbers.lookup(A) -> BBNumbers.find(A)->second
BBNumbers has been computed, thus we can assume the value exists in the predicate.
llvm-svn: 358351
Summary:
Create a method to forget everything in SCEV.
Add a cl::opt and PassManagerBuilder option to use this in LoopUnroll.
Motivation: Certain Halide applications spend a very long time compiling in forgetLoop, and prefer to forget everything and rebuild SCEV from scratch.
Sample difference in compile time reduction: 21.04 to 14.78 using current ToT release build.
Testcase showcasing this cannot be opensourced and is fairly large.
The option disabled by default, but it may be desirable to enable by
default. Evidence in favor (two difference runs on different days/ToT state):
File Before (s) After (s)
clang-9.bc 7267.91 6639.14
llvm-as.bc 194.12 194.12
llvm-dis.bc 62.50 62.50
opt.bc 1855.85 1857.53
File Before (s) After (s)
clang-9.bc 8588.70 7812.83
llvm-as.bc 196.20 194.78
llvm-dis.bc 61.55 61.97
opt.bc 1739.78 1886.26
Reviewers: sanjoy
Subscribers: mehdi_amini, jlebar, zzheng, javed.absar, dmgreen, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60144
llvm-svn: 358304