This fixes the missing warning here:
struct S {
template <typename T>
void meth() {
char arr[3];
arr[4] = 0; // warning: array index 4 is past the end of the array
}
};
template <typename T>
void func() {
char arr[3];
arr[4] = 0; // no warning
}
llvm-svn: 170180
I wasn't sure where to put the test case for this, but this seemed like as good
a place as any. I had to reorder the tests here to make them legible while
still matching the order of metadata output in the IR file (for some reason
making it virtual changed the ordering).
Relevant commit to fix up LLVM to actually respect 'artificial' member
variables is coming once I write up a test case for it.
llvm-svn: 170154
don't crash when loading a PCH with the older format.
The introduction of the control block broke compatibility with PCHs from
older versions. This patch allows loading (and rejecting) PCHs from an older
version and allows newer PCHs to be rejected from older clang versions as well.
rdar://12821386
llvm-svn: 170150
specifies not to. Dont build ASTMatchers with Rewriter disabled and
StaticAnalyzer when it's disabled.
Without all those three, the clang binary shrinks (x86_64) from ~36MB
to ~32MB (unstripped).
llvm-svn: 170135
This is a Band-Aid fix to a false positive, where we complain about not
initializing self to [super init], where self is not coming from the
init method, but is coming from the caller to init.
The proper solution would be to associate the self and it's state with
the enclosing init.
llvm-svn: 170059
This still isn't quite right, but it fixes a crash.
I factored out findCommonParent because we need it on the result of
getImmediateExpansionRange: for a function macro, the beginning
and end of an expansion range can come out of different
macros/macro arguments, which means the resulting range is a complete
mess to handle consistently.
I also made some changes to how findCommonParent works; it works somewhat
better in some cases, and somewhat worse in others, but I think overall
it's a better balance. I'm coming to the conclusion that mapDiagnosticRanges
isn't using the right algorithm, though: chasing the caret is fundamentally
more complicated than any algorithm which only considers one FileID for the
caret can handle because each SourceLocation doesn't really have a single parent.
We need to follow the same path of choosing expansion locations and spelling
locations which the caret used to come up with the correct range
in the general case.
Fixes <rdar://problem/12847524>.
llvm-svn: 170049
Converts:
LanguageExtensions
LibASTMatchers
LibTooling
PCHInternals
ThreadSanitizer
Tooling
Patch by Mykhailo Pustovit!
(with minor edits by Dmitri Gribenko and Sean Silva)
llvm-svn: 170048
I don't think this will be visible just yet on <clang.llvm.org/docs/>
since I don't think that the necessary server-side setup has taken
place.
Don't shoot me over the theme. I don't want to duplicate LLVM's theme
into the clang repo at the moment, so I just used one of Sphinx's
default themes.
llvm-svn: 170042
has inconsistent ownership with the backing ivar, point the error location to the
ivar.
Pointing to the ivar (instead of the @synthesize) is better since this is where a fix is needed.
Also provide the location of @synthesize via a note.
This also fixes the problem where an auto-synthesized property would emit an error without
any location.
llvm-svn: 170039
My variadics patch, r169588, changed these calls to typically be
bitcasts rather than calls to a supposedly variadic function.
This totally subverted a hack where we intentionally dropped
excess arguments from such calls in order to appease the inliner
and a "warning" from the optimizer. This patch extends the hack
to also work with bitcasts, as well as teaching it to rewrite
invokes.
llvm-svn: 170034
We don't handle array destructors correctly yet, but we now apply the same
hack (explicitly destroy the first element, implicitly invalidate the rest)
for multidimensional arrays that we already use for linear arrays.
<rdar://problem/12858542>
llvm-svn: 170000
call sites as tail calls unconditionally. While it's theoretically true that
this is just an optimization, it's an optimization that we very much want to
happen even at -O0, or else ARC applications become substantially harder to
debug. See r169796 for the llvm/fast-isel side of things.
rdar://12553082
llvm-svn: 169996
is switched of by about 0.8% (tested with int i<N>).
Additionally, this puts computing the diagnostic class into the hot
path more when parsing, in preparation for upcoming optimizations
in this area.
llvm-svn: 169976