Summary:
This patch adds support of expression evaluation in a context of some object.
Consider the following example:
```
struct S {
int a = 11;
int b = 12;
};
int main() {
S s;
int a = 1;
int b = 2;
// We have stopped here
return 0;
}
```
This patch allows to do something like that:
```
lldb.frame.FindVariable("s").EvaluateExpression("a + b")
```
and the result will be `33` (not `3`) because fields `a` and `b` of `s` will be
used (not locals `a` and `b`).
This is achieved by replacing of `this` type and object for the expression. This
has some limitations: an expression can be evaluated only for values located in
the debuggee process memory (they must have an address of `eAddressTypeLoad`
type).
Reviewers: teemperor, clayborg, jingham, zturner, labath, davide, spyffe, serge-sans-paille
Reviewed By: jingham
Subscribers: abidh, lldb-commits, leonid.mashinskiy
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D55318
llvm-svn: 353149
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This builds on https://reviews.llvm.org/D43884 and https://reviews.llvm.org/D43886 and extends LLDB support of Obj-C exceptions to also look for a "current exception" for a thread in the C++ exception handling runtime metadata (via call to __cxa_current_exception_type). We also construct an actual historical SBThread/ThreadSP that contains frames from the backtrace in the Obj-C exception object.
The high level goal this achieves is that when we're already crashed (because an unhandled exception occurred), we can still access the exception object and retrieve the backtrace from the throw point. In Obj-C, this is particularly useful because a catch+rethrow is very common and in those cases you currently don't have any access to the throw point backtrace.
Differential Revision: https://reviews.llvm.org/D44072
llvm-svn: 349718
This patch changes the way the reproducer is initialized. Rather than
making changes at run time we now do everything at initialization time.
To make this happen we had to introduce initializer options and their SB
variant. This allows us to tell the initializer that we're running in
reproducer capture/replay mode.
Because of this change we also had to alter our testing strategy. We
cannot reinitialize LLDB when using the dotest infrastructure. Instead
we use lit and invoke two instances of the driver.
Another consequence is that we can no longer enable capture or replay
through commands. This was bound to go away form the beginning, but I
had something in mind where you could enable/disable specific providers.
However this seems like it adds very little value right now so the
corresponding commands were removed.
Finally this change also means you now have to control this through the
driver, for which I replaced --reproducer with --capture and --replay to
differentiate between the two modes.
Differential revision: https://reviews.llvm.org/D55038
llvm-svn: 348152
Summary:
This patch fixes the next situation. On Windows clang-cl makes no stub before
the main function, so the main function is located exactly on module entry
point. May be it is the same on other platforms. So consider the following
sequence:
- set a breakpoint on main and stop there;
- try to evaluate expression, which requires a code execution on the debuggee
side. Such an execution always returns to the module entry, and the plan waits
for it there;
- the plan understands that it is complete now and removes its breakpoint. But
the breakpoint site is still there, because we also have a breakpoint on
entry;
- StopInfo analyzes a situation. It sees that we have stopped on the breakpoint
site, and it sees that the breakpoint site has owners, and no one logical
breakpoint is internal (because the plan is already completed and it have
removed its breakpoint);
- StopInfo thinks that it's a user breakpoint and skips it to avoid recursive
computations;
- the program continues.
So in this situation the program continues without a stop right after
the expression evaluation. To avoid this an additional check that
the plan was completed was added.
Reviewers: jingham, zturner, boris.ulasevich
Reviewed by: jingham
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D53761
llvm-svn: 347974
When I landed the initial reproducer framework I knew there were some
things that needed improvement. Rather than bundling it with a patch
that adds more functionality I split it off into this patch. I also
think the API is stable enough to add unit testing, which is included in
this patch as well.
Other improvements include:
- Refactor how we initialize the loader and generator.
- Improve naming consistency: capture and replay seems the least ambiguous.
- Index providers by name and make sure there's only one of each.
- Add convenience methods for creating and accessing providers.
Differential revision: https://reviews.llvm.org/D54616
llvm-svn: 347716
When debugging read-only memory we cannot use software breakpoint. We
already have support for hardware breakpoints and users can specify them
with `-H`. However, there's no option to force LLDB to use hardware
breakpoints internally, for example while stepping.
This patch adds a setting target.require-hardware-breakpoint that forces
LLDB to always use hardware breakpoints. Because hardware breakpoints
are a limited resource and can fail to resolve, this patch also extends
error handling in thread plans, where breakpoints are used for stepping.
Differential revision: https://reviews.llvm.org/D54221
llvm-svn: 346920
This patch introduces a concept of "frame recognizer" and "recognized frame". This should be an extensible mechanism that retrieves information about special frames based on ABI, arguments or other special properties of that frame, even without source code. A few examples where that could be useful could be 1) objc_exception_throw, where we'd like to get the current exception, 2) terminate_with_reason and extracting the current terminate string, 3) recognizing Objective-C frames and automatically extracting the receiver+selector, or perhaps all arguments (based on selector).
Differential Revision: https://reviews.llvm.org/D44603
llvm-svn: 345693
This patch introduces a concept of "frame recognizer" and "recognized frame". This should be an extensible mechanism that retrieves information about special frames based on ABI, arguments or other special properties of that frame, even without source code. A few examples where that could be useful could be 1) objc_exception_throw, where we'd like to get the current exception, 2) terminate_with_reason and extracting the current terminate string, 3) recognizing Objective-C frames and automatically extracting the receiver+selector, or perhaps all arguments (based on selector).
Differential Revision: https://reviews.llvm.org/D44603
llvm-svn: 345686
This patch introduces a concept of "frame recognizer" and "recognized frame". This should be an extensible mechanism that retrieves information about special frames based on ABI, arguments or other special properties of that frame, even without source code. A few examples where that could be useful could be 1) objc_exception_throw, where we'd like to get the current exception, 2) terminate_with_reason and extracting the current terminate string, 3) recognizing Objective-C frames and automatically extracting the receiver+selector, or perhaps all arguments (based on selector).
Differential Revision: https://reviews.llvm.org/D44603
llvm-svn: 345678
This patch teaches lldb to detect when there are missing frames in a
backtrace due to a sequence of tail calls, and to fill in the backtrace
with artificial tail call frames when this happens. This is only done
when the execution history can be determined from the call graph and
from the return PC addresses of calls on the stack. Ambiguous sequences
of tail calls (e.g anything involving tail calls and recursion) are
detected and ignored.
Depends on D49887.
Differential Revision: https://reviews.llvm.org/D50478
llvm-svn: 343900
This change allows you to write a new breakpoint type where the
logic for setting breakpoints is determined by a Python callback
written using the SB API's.
Differential Revision: https://reviews.llvm.org/D51830
llvm-svn: 342185
Summary:
This patch adds a framework for adding descriptions to the command completions we provide.
It also adds descriptions for completed top-level commands so that we can test this code.
Completions are in general supposed to be displayed alongside the completion itself. The descriptions
can be used to provide additional information about the completion to the user. Examples for descriptions
are function signatures when completing function calls in the expression command or the binary name
when providing completion for a symbol.
There is still some boilerplate code from the old completion API left in LLDB (mostly because the respective
APIs are reused for non-completion related purposes, so the CompletionRequest doesn't make sense to be
used), so that's why I still had to change some function signatures. Also, as the old API only passes around a
list of matches, and the descriptions are for these functions just another list, I had to add some code that
essentially just ensures that both lists are always the same side (e.g. all the manual calls to
`descriptions->AddString(X)` below a `matches->AddString(Y)` call).
The initial command descriptions that come with this patch are just reusing the existing
short help that is already added in LLDB.
An example completion with descriptions looks like this:
```
(lldb) pl
Available completions:
platform -- Commands to manage and create platforms.
plugin -- Commands for managing LLDB plugins.
```
Reviewers: #lldb, jingham
Reviewed By: #lldb, jingham
Subscribers: jingham, JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D51175
llvm-svn: 342181
This patch extends the SBAPI to allow for setting a breakpoint not
only at a specific line, but also at a specific (minimum) column. When
a column is specified, it will try to find an exact match or the
closest match on the same line that comes after the specified
location.
Differential Revision: https://reviews.llvm.org/D51461
llvm-svn: 341078
Summary:
The new API appends an image search path to the
target's path mapping list.
Reviewers: aprantl, clayborg, labath
Reviewed By: aprantl
Subscribers: ki.stfu, lldb-commits
Differential Revision: https://reviews.llvm.org/D49739
llvm-svn: 339175
Summary:
This patch adds the possibility to specify an exit code when calling quit.
We accept any int, even though it depends on the user what happens if the int is
out of the range of what the operating system supports as exit codes.
Fixes rdar://problem/38452312
Reviewers: davide, jingham, clayborg
Reviewed By: jingham
Subscribers: clayborg, jingham, lldb-commits
Differential Revision: https://reviews.llvm.org/D48659
llvm-svn: 336824
Summary: The new API allows to find a list of compile units related to target/module.
Reviewers: aprantl, clayborg
Reviewed By: aprantl
Subscribers: jingham, lldb-commits
Differential Revision: https://reviews.llvm.org/D48801
llvm-svn: 336200
This provides an efficient (at least on Posix platforms) way to offload to the
target process the search & loading of a library when all we have are the
library name and a set of potential candidate locations.
<rdar://problem/40905971>
llvm-svn: 335912
This change allows to make AddressClass strongly typed enum and not to have issues with old versions of SWIG that don't support enum classes.
llvm-svn: 335710
There was no way to find out what's wrong if SBProcess SBTarget::LoadCore(const char *core_file) failed.
Additionally, the implementation was unconditionally setting sb_process, so it wasn't even possible to check if the return SBProcess is valid.
This change adds a new overload which surfaces the errors and also returns a valid SBProcess only if the core load succeeds:
SBProcess SBTarget::LoadCore(const char *core_file, SBError &error);
Differential Revision: https://reviews.llvm.org/D48049
llvm-svn: 334439
Summary:
This adds a SBDebugger::GetBuildConfiguration static function, which
returns a SBStructuredData describing the the build parameters of
liblldb. Right now, it just contains one entry: whether we were built
with XML support.
I use the new functionality to skip a test which requires XML support,
but concievably the new function could be useful to other liblldb
clients as well (making sure the library supports the feature they are
about to use).
Reviewers: zturner, jingham, clayborg, davide
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D43333
llvm-svn: 325504
SetOututFileHandle to work with IOBase.
I did make one change after checking with Larry --
I renamed SBDebugger::Flush to FlushDebuggerOutputHandles
and added a short docstring to the .i file to make it
a little clearer under which context programs may need
to use this API.
Differential Revision: https://reviews.llvm.org/D39128
<rdar://problem/34870417>
llvm-svn: 317182
SetOututFileHandle to work with IOBase.
I did make one change after checking with Larry --
I renamed SBDebugger::Flush to FlushDebuggerOutputHandles
and added a short docstring to the .i file to make it
a little clearer under which context programs may need
to use this API.
Differential Revision: https://reviews.llvm.org/D38829
llvm-svn: 317180
This patch adds support for passing an arbitrary python stream
(anything inheriting from IOBase) to SetOutputFileHandle or
SetErrorFileHandle.
Differential revision: https://reviews.llvm.org/D38829
<rdar://problem/34870417>
llvm-svn: 315966
The core of this change is the new CommandInterpreter::m_command_state,
which models the state transitions for interactive commands, including
an "interrupted" state transition.
In general, command interruption requires cooperation from the code
executing the command, which needs to poll for interruption requests
through CommandInterpreter::WasInterrupted().
CommandInterpreter::PrintCommandOutput() implements an optionally
interruptible printing of the command output, which for large outputs
was likely the longest blocking part.
(ex. target modules dump symtab on a complex binary could take 10+ minutes)
Differential Revision: https://reviews.llvm.org/D37923
llvm-svn: 315037
The core of this change is the new CommandInterpreter::m_command_state, which
models the state transitions for interactive commands, including an
"interrupted" state transition.
In general, command interruption requires cooperation from the code executing
the command, which needs to poll for interruption requests through
CommandInterpreter::WasInterrupted().
CommandInterpreter::PrintCommandOutput() implements an optionally
interruptible printing of the command output, which for large outputs was
likely the longest blocking part. (ex. target modules dump symtab on a
complex binary could take 10+ minutes)
patch by lemo
Differential Revision: https://reviews.llvm.org/D37923
llvm-svn: 313904
When introduced, breakpoint names were just tags that you could
apply to breakpoints that would allow you to refer to a breakpoint
when you couldn't capture the ID, or to refer to a collection of
breakpoints.
This change makes the names independent holders of breakpoint options
that you can then apply to breakpoints when you add the name to the
breakpoint. It adds the "breakpoint name configure" command to set
up or reconfigure breakpoint names. There is also full support for
then in the SB API, including a new SBBreakpointName class.
The connection between the name and the breakpoints
sharing the name remains live, so if you reconfigure the name, all the
breakpoint options all change as well. This allows a quick way
to share complex breakpoint behavior among a bunch of breakpoints, and
a convenient way to iterate on the set.
You can also create a name from a breakpoint, allowing a quick way
to copy options from one breakpoint to another.
I also added the ability to make hidden and delete/disable protected
names. When applied to a breakpoint, you will only be able to list,
delete or disable that breakpoint if you refer to it explicitly by ID.
This feature will allow GUI's that need to use breakpoints for their
own purposes to keep their breakpoints from getting accidentally
disabled or deleted.
<rdar://problem/22094452>
llvm-svn: 313292
Summary:
The available platform list was previously only accessible via the
`platform list` command, this patch makes it possible to access that
list via the SBDebugger API. The active platform list has likewise
been exposed via the SBDebugger API.
Differential Revision: https://reviews.llvm.org/D35760
llvm-svn: 310452
You can get a breakpoint to auto-continue by adding "continue"
as a command, but that has the disadvantage that if you hit two
breakpoints simultaneously, the continue will force the process
to continue, and maybe even forstalling the commands on the other.
The auto-continue flag means the breakpoints can negotiate about
whether to stop.
Writing tests, I wanted to supply some commands when I made the
breakpoints, so I also added that ability.
llvm-svn: 309969
When an option was set at on a location, I was just copying the whole option set
to the location, and letting it shadow the breakpoint options. That was wrong since
it meant changes to unrelated options on the breakpoint would no longer take on this
location. I added a mask of set options and use that for option propagation.
I also added a "location" property to breakpoints, and added SBBreakpointLocation.{G,S}etCommandLineCommands
since I wanted to use them to write some more test cases.
<rdar://problem/24397798>
llvm-svn: 309772