accumulator forwarding. Specifically (from SVN log entry):
Distribute (A + B) * C to (A * C) + (B * C) to make use of NEON multiplier
accumulator forwarding:
vadd d3, d0, d1
vmul d3, d3, d2
=>
vmul d3, d0, d2
vmla d3, d1, d2
Make sure it catches cases where operand 1 is add/fadd/sub/fsub, which was
intended in the original revision.
llvm-svn: 133127
was lowering them to sext / uxt + mul instructions. Unfortunately the
optimization passes may hoist the extensions out of the loop and separate them.
When that happens, the long multiplication instructions can be broken into
several scalar instructions, causing significant performance issue.
Note the vmla and vmls intrinsics are not added back. Frontend will codegen them
as intrinsics vmull* + add / sub. Also note the isel optimizations for catching
mul + sext / zext are not changed either.
First part of rdar://8832507, rdar://9203134
llvm-svn: 128502
isel lowering to fold the zero-extend's and take advantage of no-stall
back to back vmul + vmla:
vmull q0, d4, d6
vmlal q0, d5, d6
is faster than
vaddl q0, d4, d5
vmovl q1, d6
vmul q0, q0, q1
This allows us to vmull + vmlal for:
f = vmull_u8( vget_high_u8(s), c);
f = vmlal_u8(f, vget_low_u8(s), c);
rdar://9197392
llvm-svn: 128444
We need to check if the individual vector elements are sign/zero-extended
values. For now this only handles constants values. Radar 8687140.
llvm-svn: 120034
add, and subtract operations with zero-extended or sign-extended vectors.
Update tests. Add auto-upgrade support for the old intrinsics.
llvm-svn: 112773