Trying to build up access functions for any of these blocks is likely to fail,
as error blocks may contain invalid/non-representable instructions, and blocks
dominated by error blocks may reference such instructions, which wil also cause
failures. As all of these blocks are anyhow assumed to not be executed, we can
just remove them early on.
This fixes http://llvm.org/PR25596
llvm-svn: 253818
Previously, we just skipped error blocks during scop construction. With
this change we make sure we can construct domains for error blocks such that
these domains can be forwarded to subsequent basic blocks.
This change ensures that basic blocks that post-dominate and are dominated by
a basic block that branches to an error condition have the very same iteration
domain as the branching basic block. Before, this change we would construct
a domain that excludes all error conditions. Such domains could become _very_
complex and were undesirable to build.
Another solution would have been to drop these constraints using a
dominance/post-dominance check instead of modeling the error blocks. Such
a solution could also work in case of unreachable statements or infinite
loops in the scop. However, as we currently (to my believe incorrectly) model
unreachable basic blocks in the post-dominance tree, such a solution is not
yet feasible and requires first a change to LLVM's post-dominance tree
construction.
This commit addresses the most sever compile time issue reported in:
http://llvm.org/PR25458
llvm-svn: 252713
If a SCoP contains error blocks we cannot use the domain constraints
to simplify the assumptions as the domain is already influenced by the
assumptions we took. Before this patch we did that and some assumptions
became self-fulfilling as they were implied by the domain constraints.
llvm-svn: 252424
This replaces the support for user defined error functions by a
heuristic that tries to determine if a call to a non-pure function
should be considered "an error". If so the block is assumed not to be
executed at runtime. While treating all non-pure function calls as
errors will allow a lot more regions to be analyzed, it will also
cause us to dismiss a lot again due to an infeasible runtime context.
This patch tries to limit that effect. A non-pure function call is
considered an error if it is executed only in conditionally with
regards to a cheap but simple heuristic.
llvm-svn: 249611