Load instructions may possibly be related to multiple memory accesses, but we
are only interested in the array read access that describes the memory location
the load instructions loads from. By using getArrayAccessfor we ensure to always
obtain the right memory access.
This issue was found by inspection without having a failing test case.
llvm-svn: 255716
getAccessFor does not guarantee a certain access to be returned in case an
instruction is related to multiple accesses. However, in the vector code
generation we want to know the stride of the array access of a store
instruction. By using getArrayAccessFor we ensure we always get the correct
memory access.
This patch fixes a potential bug, but I was unable to produce a failing test
case. Several existing test cases cover this code, but all of them already
passed out of luck (or the specific but not-guaranteed order in which we build
memory accesses).
llvm-svn: 255715
When generating scalar loads/stores separately the vector code has not been
updated. This commit adds code to generate scalar loads for vector code as well
as code to assert in case scalar stores are encountered within a vector loop.
llvm-svn: 255714
When rewriting the access functions of load/store statements, we are only
interested in the actual array memory location. The current code just took
the very first memory access, which could be a scalar or an array access. As
a result, we failed to update access functions even though this was requested
via .jscop.
llvm-svn: 255713
This change should not change the behavior of Polly today, but it allows
external constants to be remapped e.g. when targetting multiple LLVM modules.
llvm-svn: 255506
This reverts commit r255471.
Johannes raised in the post-commit review of r255471 the concern that PHI
writes in non-affine regions with two exiting blocks are not really MUST_WRITE,
but we just know that at least one out of the set of all possible PHI writes
will be executed. Modeling all PHI nodes as MUST_WRITEs is probably save, but
adding the needed documentation for such a special case is probably not worth
the effort. Michael will be proposing a new patch that ensures only a single
PHI_WRITE is created for non-affine regions, which - besides other benefits -
should also allow us to use a single well-defined MUST_WRITE for such PHI
writes.
(This is not a full revert, but the condition and documentation have been
slightly extended)
llvm-svn: 255503
Before this commit, only the region's entry block was assumed to always
execute in a non-affine subregion. We replace this by a test whether it
dominates the exit block (this necessarily includes the entry block)
which should be more accurate.
llvm-svn: 255473
LLVM's IR guarantees that a value definition occurs before any use, and
also the value of a PHI must be one of the incoming values, "written"
in one of the incoming blocks. Hence, such writes are never conditional
in the context of a non-affine subregion.
llvm-svn: 255471
Over time different vocabulary has been introduced to describe the different
memory objects in Polly, resulting in different - often inconsistent - naming
schemes in different parts of Polly. We now standartize this to the following
scheme:
KindArray, KindValue, KindPHI, KindExitPHI
| ------- isScalar -----------|
In most cases this naming scheme has already been used previously (this
minimizes changes and ensures we remain consistent with previous publications).
The main change is that we remove KindScalar to clearify the difference between
a scalar as a memory object of kind Value, PHI or ExitPHI and a value (former
KindScalar) which is a memory object modeling a llvm::Value.
We also move all documentation to the Kind* enum in the ScopArrayInfo class,
remove the second enum in the MemoryAccess class and update documentation to be
formulated from the perspective of the memory object, rather than the memory
access. The terms "Implicit"/"Explicit", formerly used to describe memory
accesses, have been dropped. From the perspective of memory accesses they
described the different memory kinds well - especially from the perspective of
code generation - but just from the perspective of a memory object it seems more
straightforward to talk about scalars and arrays, rather than explicit and
implicit arrays. The last comment is clearly subjective, though. A less
subjective reason to go for these terms is the historic use both in mailing list
discussions and publications.
llvm-svn: 255467
Use it to print "null" if a MemoryAccess's access relation is not
available instead of printing nothing.
Suggested-by: Johannes Doerfert
llvm-svn: 255466
Introduce a function getStmtForRegionNode() to the corresponding
ScopStmt of a RegionNode. We can use it to call the existing
ScopStmt::isEmpty() function instead of searching for accesses.
llvm-svn: 255465
When introducing separate control flow for the original and optimized code we
introduce now a special 'ExitingBlock':
\ /
EnteringBB
|
SplitBlock---------\
_____|_____ |
/ EntryBB \ StartBlock
| (region) | |
\_ExitingBB_/ ExitingBlock
| |
MergeBlock---------/
|
ExitBB
/ \
This 'ExitingBlock' contains code such as the final_reloads for scalars, which
previously were just added to whichever statement/loop_exit/branch-merge block
had been generated last. Having an explicit basic block makes it easier to
find these constructs when looking at the CFG.
llvm-svn: 255107
This update brings in improvements to isl's 'isolate' option that reduce the
number of code versions generated. This results in both code-size and compile
time reduction for outer loop vectorization.
Thanks to Roman Garev and Sven Verdoolaege for working on this improvement.
llvm-svn: 254706
The motivation is to fix a compilation error with Visual Studio 2013.
See http://reviews.llvm.org/D14886.
Thanks to Sumanth Gundapaneni for finding the issue and suggesting a
patch.
llvm-svn: 254498
The script will checkout the most recent master from
http://repo.or.cz/isl.git into /tmp, create a distribution tarball, and
extract it as replacement of lib/External/isl. After that it can be
committed to the Polly repository.
llvm-svn: 254497
Acc==MA implies Acc->getAccessInstruction() == MA->getAccessInstruction().
Suggested as post-commit review for 254305 by Michael Kruse.
llvm-svn: 254327
The use of C++'s high-level iterator functionality instead of two while loops
and explicit iterator handling improves readability of this code.
Proposed-by: Michael Kruse <llvm@meinersbur.de>
Differential Revision: http://reviews.llvm.org/D15068
llvm-svn: 254305
Re-run canonicalization passes after Polly's code generation.
The set of passes currently added here are nearly all the passes between
--polly-position=early and --polly-position=before-vectorizer, i.e. all
passes that would usually run after Polly.
In order to run these only if Polly actually modified the code, we add a
function attribute "polly-optimzed" to a function that contains
generated code. The cleanup pass is skipped if the function does not
have this attribute.
There is no support by the (legacy) PassManager to run passes only under
some conditions. One could have wrapped all transformation passes to run
only when CodeGeneration changed the code, but the analyses would run
anyway. This patch creates an independent pass manager. The
disadvantages are that all analyses have to re-run even if preserved and
it does not honor compiler switches like the PassManagerBuilder does.
Differential Revision: http://reviews.llvm.org/D14333
llvm-svn: 254150
Previously, accesses that originate from PHI nodes in the exit block
were registered as SCALAR. In some context they are treated as scalars,
but it makes a difference in others. We used to check whether the
AccessInstruction is a terminator to differentiate the cases.
This patch introduces an MemoryAccess origin EXIT_PHI and a
ScopArrayInfo kind KIND_EXIT_PHI to make this case more explicit. No
behavioural change intended.
Differential Revision: http://reviews.llvm.org/D14688
llvm-svn: 254149
gfortran (and fortran in general?) does not compute the address of an array
element directly from the array sizes (e.g., %s0, %s1), but takes first the
maximum of the sizes and 0 (e.g., max(0, %s0)) before multiplying the resulting
value with the per-dimension array subscript expressions. To successfully
delinearize index expressions as we see them in fortran, we first filter 'smax'
expressions out of the SCEV expression, use them to guess array size parameters
and only then continue with the existing delinearization.
llvm-svn: 253995
Trying to build up access functions for any of these blocks is likely to fail,
as error blocks may contain invalid/non-representable instructions, and blocks
dominated by error blocks may reference such instructions, which wil also cause
failures. As all of these blocks are anyhow assumed to not be executed, we can
just remove them early on.
This fixes http://llvm.org/PR25596
llvm-svn: 253818
The most interesting change for Polly in this isl update is 4d5654af which
in certain cases can speed up the construction of run-time checks from an isl
set consisting of several disjuncts significantly.
llvm-svn: 253794
At some point we enforced lcssa for the loop surrounding the entry block.
This is not only questionable as it does not check any other loop but also
not needed any more.
llvm-svn: 253789
In case the original parameter instruction does not have a name, but it comes
from a load instruction where the base pointer has a name we used the name of
the load instruction to give some more intuition of where the parameter came
from. To ensure this works also through GEPs which may have complex offsets,
we originally just dropped the offsets and _only_ used the base pointer name.
As this can result in multiple parameters to get the same name, we now prefix
the parameter ID to ensure parameter names are unique. This will make it easier
to understand debug output.
This change does not affect correctness, as parameter IDs (even of the same
name) can always be distinguished through the SCEV pointer stored inside them.
llvm-svn: 253330
Without this change we may start to refuse scops in larger compilation units
just because a lot of code has already been compiled earlier.
Found by inspection. I do not yet have a good test case for this.
llvm-svn: 253050
Only when we check for wrapping we want to use the store size, for all
other cases we use the alloc size now.
Suggested by: Tobias Grosser <tobias@grosser.es>
llvm-svn: 252941
IVs of loops for which the loop header is in the subregion, but not the entire
loop may be incremented outside of the subregion and can consequently not be
kept private to the subregion. Instead, they need to and are modeled as virtual
loops in the iteration domains. As this is the case, generating new subregion
induction variables for such loops is not needed and indeed wrong as they would
hide the virtual induction variables modeled in the scop.
This fixes a miscompile in MultiSource/Benchmarks/Ptrdist/bc and
MultiSource/Benchmarks/nbench/. Thanks Michael and Johannes for their
investiagations and helpful observations regarding this bug.
llvm-svn: 252860