Use getReturnedArgOperand() instead of rolling our own. Note that it's
equivalent because there can only be one 'returned' operand.
The existing code was also incorrect: there already was awkward logic to
ignore callee/EH blocks, but operands can now also be operand bundles,
in which case we'll look for non-existent parameter attributes.
Unfortunately, this isn't observable in-tree, as it only crashes when
exercising the regular call lowering logic with operand bundles.
Still, this is a nice small cleanup anyway.
llvm-svn: 290905
Provide a distinct contents for semBogus and semPPCDoubleDouble in order
to prevent compilers from collapsing them to a single memory address,
while we heavily rely on every semantic having distinct address.
This happens if insecure optimization collapsing identical values is
enabled. As a result, APFloats of semBogus are indistinguishable from
semPPCDoubleDouble -- and whenever the move constructor is used, the old
value beings being incorrectly recognized as a semPPCDoubleDouble.
Since the values in semPPCDoubleDouble are not used anywhere,
we can easily solve this issue via altering the value of one of the
fields and therefore ensuring that the collapse can not occur.
Differential Revision: https://reviews.llvm.org/D28112
llvm-svn: 290896
Summary:
No need to have this per-architecture. While there, unify 32-bit ARM's
behaviour with what changed elsewhere and start function names lowercase
as per the coding standards. Individual entry emission code goes to the
entry's own class.
Fully tested on amd64, cross-builds on both ARMs and PowerPC.
Reviewers: dberris
Subscribers: aemerson, llvm-commits
Differential Revision: https://reviews.llvm.org/D28209
llvm-svn: 290858
Summary:
Regardless how the loop body weight is distributed, we should preserve
total loop body weight. i.e. we should have same weight reaching the body of the loop
or its duplicates in peeled and unpeeled case.
Reviewers: mkuper, davidxl, anemet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28179
llvm-svn: 290833
Apparently my suggestion of using ternary doesn't really work
as clang complains about incompatible types on LHS and RHS. Some
GCC versions happen to accept the code but clang behaviour is
correct here.
llvm-svn: 290822
Add an explicit LLVM_ENABLE_DIA_SDK option to control building support
for DIA SDK-based debugging. Control its value to match whether DIA SDK
support was found and expose it in LLVMConfig (alike LLVM_ENABLE_ZLIB).
Its value is needed for LLDB to determine whether to run tests requiring
DIA support. Currently it is obtained from llvm/Config/config.h;
however, this file is not available for standalone builds. Following
this change, LLDB will be modified to use the value from LLVMConfig.
Differential Revision: https://reviews.llvm.org/D26255
llvm-svn: 290818
GNU as rejects input where .cfi_sections is used after .cfi_startproc,
if the new section differs from the old. Adjust our output to always
emit .cfi_sections before the first .cfi_startproc to minimize necessary
code.
Differential Revision: https://reviews.llvm.org/D28011
llvm-svn: 290817
Summary:
This avoids the very fragile code for null expressions. We could also use a denseset that tracks which things have null expressions instead, but that seems pretty fragile and premature optimization.
This resolves a number of infinite loop cases, test reductions coming.
Reviewers: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28193
llvm-svn: 290816
Summary: Previously, we tried to fix up the equivalences during symbolic evaluation. This does not work. Now, we change the equivalences during congruence finding, where it belongs. We also initialize the equivalence table to give a maximal answer.
Reviewers: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28192
llvm-svn: 290815
X86 target does not provide any target specific cost calculation for interleave patterns.It uses the common target-independent calculation, which gives very high numbers. As a result, the scalar version is chosen in many cases. The situation on AVX-512 is even worse, since we have 3-src shuffles that significantly reduce the cost.
In this patch I calculate the cost on AVX-512. It will allow to compare interleave pattern with gather/scatter and choose a better solution (PR31426).
* Shiffle-broadcast cost will be changed in Simon's upcoming patch.
Differential Revision: https://reviews.llvm.org/D28118
llvm-svn: 290810
Summary:
`PromotedFloats` needs to be checked in
`DAGTypeLegalizer::PerformExpensiveChecks`. This patch fixes a few type
legalization failures with expansive checks for ARM fp16 tests.
Reviewers: baldrick, bogner, arsenm
Subscribers: arsenm, aemerson, llvm-commits
Differential Revision: https://reviews.llvm.org/D28187
llvm-svn: 290796
I'm not sure if this was intentional, but today
isGuaranteedToTransferExecutionToSuccessor returns true for readonly and
argmemonly calls that may throw. This commit changes the function to
not implicitly infer nounwind this way.
Even if we eventually specify readonly calls as not throwing,
isGuaranteedToTransferExecutionToSuccessor is not the best place to
infer that. We should instead teach FunctionAttrs or some other such
pass to tag readonly functions / calls as nounwind instead.
llvm-svn: 290794
I don't think this hole is currently exposed, but I crashed regression tests for
jump-threading and loop-vectorize after I added calls to isKnownNonNullAt() in
InstSimplify as part of trying to solve PR28430:
https://llvm.org/bugs/show_bug.cgi?id=28430
That's because they call into value tracking with a context instruction, but no
other parts of the query structure filled in.
For more background, see the discussion in:
https://reviews.llvm.org/D27855
llvm-svn: 290786
This was originally motivated by a compile time problem I've since figured out how to solve differently, but the cleanup seemed useful. We had the same logic - which essentially implemented find - in several places. By commoning them out, I can implement find and allow erase to be inlined at the call sites if profitable.
Differential Revision: https://reviews.llvm.org/D28183
llvm-svn: 290779
Summary: Update the Phabricator docs to clarify how changes are merged for contributors without commit access.
Reviewers: delcypher, aaron.ballman
Subscribers: aaron.ballman, anmol, llvm-commits
Differential Revision: https://reviews.llvm.org/D28184
llvm-svn: 290767
Summary:
gep 0, 0 is equivalent to bitcast. LLVM canonicalizes it
to getelementptr because it make SROA can then handle it.
Simple case like
void g(A &a) {
z(a);
if (glob)
a.foo();
}
void testG() {
A a;
g(a);
}
was not devirtualized with -fstrict-vtable-pointers because luck of
handling for gep 0 in Memory Dependence Analysis
Reviewers: dberlin, nlewycky, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28126
llvm-svn: 290763
CVP doesn't care about the order of blocks visited, but by using a pre-order traversal over the graph we can a) not visit unreachable blocks and b) optimize as we go so that analysis of later blocks produce slightly more precise results.
I noticed this via inspection and don't have a concrete example which points to the issue.
llvm-svn: 290760
The bug was introduced in r289619.
Reviewers: Mehdi Amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28134
llvm-svn: 290749
I remove one extra line, but because annoyingly llvm-lit does not
clean the output directory before running the test, it didn't fail
locally (the file was present from a previous run).
llvm-svn: 290740
This is similar to the allocfn case - if an alloca is not captured, then it's
necessarily thread-local.
Differential Revision: https://reviews.llvm.org/D28170
llvm-svn: 290738
Summary:
The current loop complete unroll algorithm checks if unrolling complete will reduce the runtime by a certain percentage. If yes, it will apply a fixed boosting factor to the threshold (by discounting cost). The problem for this approach is that the threshold abruptly. This patch makes the boosting factor a function of runtime reduction percentage, capped by a fixed threshold. In this way, the threshold changes continuously.
The patch also simplified the code by reducing one parameter in UP.
The patch only affects code-gen of two speccpu2006 benchmark:
445.gobmk binary size decreases 0.08%, no performance change.
464.h264ref binary size increases 0.24%, no performance change.
Reviewers: mzolotukhin, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26989
llvm-svn: 290737
Some incoming changes in ThinLTO will break this test.
Instead of relying on the heuristic to import, we
force the importing to happen with llvm-link.
llvm-svn: 290736
"Changed" doesn't actually change within the loop, so there's
no reason to keep track of it - we always return false during
analysis and true after the transformation is made.
llvm-svn: 290735
We correctly canonicalized (add (sext x), (sext y)) to (sext (add x, y))
where possible. However, we didn't perform the same canonicalization
for zexts or for muls.
llvm-svn: 290733
This moves the exit block and insertion point computation to be eager,
instead of after seeing the first scalar we can promote.
The cost is relatively small (the computation happens anyway, see discussion
on D28147), and the code is easier to follow, and can bail out earlier
if there's a catchswitch present.
llvm-svn: 290729
We would check whether we have a prehader *or* dedicated exit blocks,
and go into the promotion loop. Then, for each alias set we'd check
if we have a preheader *and* dedicated exit blocks, and bail if not.
Instead, bail immediately if we don't have both.
llvm-svn: 290728
We want to recompute LCSSA only when we actually promoted a value.
This means we only need to look at changes made by promotion when
deciding whether to recompute it or not, not at regular sinking/hoisting.
(This was what the code was documented as doing, just not what it did)
Hopefully NFC.
llvm-svn: 290726
Edit for voice, and also add examples. In particular, add an
explanation for why you might want to specialize IntrusiveRefCntPtrInfo,
which is not obvious.
llvm-svn: 290720
Summary:
This class is unnecessary.
Its comment indicated that it was a compile error to allocate an
instance of a class that inherits from RefCountedBaseVPTR on the stack.
This may have been true at one point, but it's not today.
Moreover you really do not want to allocate *any* refcounted object on
the stack, vptrs or not, so if we did have a way to prevent these
objects from being stack-allocated, we'd want to apply it to regular
RefCountedBase too, obviating the need for a separate RefCountedBaseVPTR
class.
It seems that the main way RefCountedBaseVPTR provides safety is by
making its subclass's destructor virtual. This may have been helpful at
one point, but these days clang will emit an error if you define a class
with virtual functions that inherits from RefCountedBase but doesn't
have a virtual destructor.
Reviewers: compnerd, dblaikie
Subscribers: cfe-commits, klimek, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D28162
llvm-svn: 290717
Summary: Previously we type-punned through a union, which is not safe.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28161
llvm-svn: 290715
This reverts commit r290694. It broke sanitizer tests on Win64. I'll
probably bring this back, but the jump tables will just live in .text
like they do for MSVC.
llvm-svn: 290714
This fixes the issue exposed in PR31393, where we weren't trying
sufficiently hard to diagnose bad TBAA metadata.
This does reduce the variety in the error messages we print out, but I
think the tradeoff of verifying more, simply and quickly overrules the
need for more helpful error messags here.
llvm-svn: 290713
Among other stuff, this allows to use predefined .option.machine_version_major
/minor/stepping symbols in the directive.
Relevant test expanded at once (also file renamed for clarity).
Differential Revision: https://reviews.llvm.org/D28140
llvm-svn: 290710
This change adds a new intrinsic which is intended to provide memcpy functionality
with additional atomicity guarantees. Please refer to the review thread
or language reference for further details.
Differential Revision: https://reviews.llvm.org/D27133
llvm-svn: 290708
We bypassed the intrinsic and returned the passthru operand, but we should also add the intrinsic to the worklist since its now dead. This can allow DCE to find it sooner and remove it. Similar was done for InsertElement when the inserted element isn't demanded.
llvm-svn: 290704
The accidentally had trivially dead code. Also needed to adjust the rounding mode to not CUR_DIRECTION so the intrinsics don't get converted to native operations before going through SimplifyDemandedVectorElts.
llvm-svn: 290702
Apparently GCC targeting Windows breaks bitfields on static data members:
struct Foo {
unsigned X : 16;
static const int M = 42;
unsigned Y : 16;
};
static_assert(sizeof(Foo) == 4, "asdf"); // fails
Who knew.
llvm-svn: 290700
Summary:
The optimal iteration order for this problem is RPO order. We want to
process as many preds of a backedge as we can before we process the
backedge.
At the same time, as we add predicate handling, we want to be able to
touch instructions that are dominated by a given block by
ranges (because a change in value numbering a predicate possibly
affects all users we dominate that are using that predicate).
If we don't do it this way, we can't do value inference over
backedges (the paper covers this in depth).
The newgvn branch currently overshoots the last part, and guarantees
that it will touch *at least* the right set of instructions, but it
does touch more. This is because the bitvector instruction ranges are
currently generated in RPO order (so we take the max and the min of
the ranges of dominated blocks, which means there are some in the
middle we didn't have to touch that we did).
We can do better by sorting the dominator tree, and then just using
dominator tree order.
As a preliminary, the dominator tree has some RPO guarantees, but not
enough. It guarantees that for a given node, your idom must come
before you in the RPO ordering. It guarantees no relative RPO ordering
for siblings. We add siblings in whatever order they appear in the module.
So that is what we fix.
We sort the children array of the domtree into RPO order, and then use
the dominator tree for ordering, instead of RPO, since the dominator
tree is now a valid RPO ordering.
Note: This would help any other pass that iterates a forward problem
in dominator tree order. Most of them are single pass. It will still
maximize whatever result they compute. We could also build the
dominator tree in this order, but our incremental updates would still
put it out of sort order, and recomputing the sort order is almost as
hard as general incremental updates of the domtree.
Also note that the sorting does not affect any tests, etc. Nothing
depends on domtree order, including the verifier, the equals
functions for domtree nodes, etc.
How much could this matter, you ask?
Here are the current numbers.
This is generated by running NewGVN over all files in LLVM.
Note that once we propagate equalities, the differences go up by an
order of magnitude or two (IE instead of 29, the max ends up in the
thousands, since the worst case we add a factor of N, where N is the
number of branch predicates). So while it doesn't look that stark for
the default ordering, it gets *much much* worse. There are also
programs in the wild where the difference is already pretty stark
(2 iterations vs hundreds).
RPO ordering:
759040 Number of iterations is 1
112908 Number of iterations is 2
Default dominator tree ordering:
755081 Number of iterations is 1
116234 Number of iterations is 2
603 Number of iterations is 3
27 Number of iterations is 4
2 Number of iterations is 5
1 Number of iterations is 7
Dominator tree sorted:
759040 Number of iterations is 1
112908 Number of iterations is 2
<yay!>
Really bad ordering (sort domtree siblings in postorder. not quite the
worst possible, but yeah):
754008 Number of iterations is 1
21 Number of iterations is 10
8 Number of iterations is 11
6 Number of iterations is 12
5 Number of iterations is 13
2 Number of iterations is 14
2 Number of iterations is 15
3 Number of iterations is 16
1 Number of iterations is 17
2 Number of iterations is 18
96642 Number of iterations is 2
1 Number of iterations is 20
2 Number of iterations is 21
1 Number of iterations is 22
1 Number of iterations is 29
17266 Number of iterations is 3
2598 Number of iterations is 4
798 Number of iterations is 5
273 Number of iterations is 6
186 Number of iterations is 7
80 Number of iterations is 8
42 Number of iterations is 9
Reviewers: chandlerc, davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28129
llvm-svn: 290699
I added one for Value back in r262045, and I'm starting to think we
should have these for any class with bitfields whose memory efficiency
really matters.
llvm-svn: 290698
Summary:
Follow-up to r290691, where I introduced HasLLVMReservedName. rnk
pointed out that that patch added an extra word to GlobalValue on MSVC,
because it doesn't pack bitfields with different types.
This patch moves HasLLVMReservedName into the existing bitfield, where
we appear to have plenty of bits to spare.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28149
llvm-svn: 290696
Summary:
We were already using 32-bit jump table entries, but this was a
consequence of the default PIC model on Win64, and not an intentional
design decision. This patch ensures that we always use 32-bit label
difference jump table entries on Win64 regardless of the PIC model. This
is a good idea because it saves executable size and object file size.
Moving the jump tables to .rdata cleans up the disassembled object code
and reduces the available ROP targets, but it requires adding one more
RIP-relative lea to the code. COFF doesn't have relocations to express
the difference between two arbitrary symbols, so we can't use the jump
table label in the label difference like we do elsewhere.
Fixes PR31488
Reviewers: majnemer, compnerd
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28141
llvm-svn: 290694
The Bitstream reader and writer are limited to handle a "size_t" at
most, which means that we can't backpatch and read back a 64bits
value on 32 bits platform.
llvm-svn: 290693
Summary:
Previously isIntrinsic() called getName(). This involves a hashtable
lookup, so is nontrivially expensive. And isIntrinsic() is called
frequently, particularly by dyn_cast<IntrinsicInstr>.
This patch steals a bit of IntID and uses that to store whether or not
getName() starts with "llvm."
Reviewers: bogner, arsenm, joker-eph
Subscribers: sanjoy, llvm-commits
Differential Revision: https://reviews.llvm.org/D22949
llvm-svn: 290691
This index record the position for each metadata record in
the bitcode, so that the reader will be able to lazy-load
on demand each individual record.
We also make sure that every abbrev is emitted upfront so
that the block can be skipped while reading.
I don't plan to commit this before having the reader
counterpart, but I figured this can be reviewed mostly
independently.
Recommit r290684 (was reverted in r290686 because a test
was broken) after adding a threshold to avoid emitting
the index when unnecessary (little amount of metadata).
This optimization "hides" a limitation of the ability
to backpatch in the bitstream: we can only backpatch
safely when the position has been flushed. So if we emit
an index for one metadata, it is possible that (part of)
the offset placeholder hasn't been flushed and the backpatch
will fail.
Differential Revision: https://reviews.llvm.org/D28083
llvm-svn: 290690
emplace_back is not faster if it is equivalent to push_back. In this cases emplaced value had the
same type that the one stored in container. It is ugly and it might be even slower (see
Scott Meyers presentation about emplacement).
llvm-svn: 290685
Summary:
This index record the position for each metadata record in
the bitcode, so that the reader will be able to lazy-load
on demand each individual record.
We also make sure that every abbrev is emitted upfront so
that the block can be skipped while reading.
I don't plan to commit this before having the reader
counterpart, but I figured this can be reviewed mostly
independently.
Reviewers: pcc, tejohnson
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28083
llvm-svn: 290684
Jump table emission can switch to .rdata before
WinException::endFunction gets called. Just remember the appropriate
text section we started in and reset back to it when we end the
function. We were already switching sections back from .xdata anyway.
Fixes the first problem in PR31488, so that now COFF switch tables can
live in .rdata if we want them to.
llvm-svn: 290678
This is an orthogonal and separated layer instead of being embedded
inside the pass manager. While it adds a small amount of complexity, it
is fairly minimal and the composability and control seems worth the
cost.
The logic for this ends up being nicely isolated and targeted. It should
be easy to experiment with different iteration strategies wrapped around
the CGSCC bottom-up walk using this kind of facility.
The mechanism used to track devirtualization is the simplest one I came
up with. I think it handles most of the cases the existing iteration
machinery handles, but I haven't done a *very* in depth analysis. It
does however match the basic intended semantics, and we can tweak or
tune its exact behavior incrementally as necessary. One thing that we
may want to revisit is freshly building the value handle set on each
iteration. While I don't think this will be a significant cost (it is
strictly fewer value handles but more churn of value handes than the old
call graph), it is conceivable that we'll want a somewhat more clever
tracking mechanism. My hope is to layer that on as a follow up patch
with data supporting any implementation complexity it adds.
This code also provides for a basic count heuristic: if the number of
indirect calls decreases and the number of direct calls increases for
a given function in the SCC, we assume devirtualization is responsible.
This matches the heuristics currently used in the legacy pass manager.
Differential Revision: https://reviews.llvm.org/D23114
llvm-svn: 290665
analyses when we're about to break apart an SCC.
We can't wait until after breaking apart the SCC to invalidate things:
1) Which SCC do we then invalidate? All of them?
2) Even if we invalidate all of them, a newly created SCC may not have
a proxy that will convey the invalidation to functions!
Previously we only invalidated one of the SCCs and too late. This led to
stale analyses remaining in the cache. And because the caching strategy
actually works, they would get used and chaos would ensue.
Doing invalidation early is somewhat pessimizing though if we *know*
that the SCC structure won't change. So it turns out that the design to
make the mutation API force the caller to know the *kind* of mutation in
advance was indeed 100% correct and we didn't do enough of it. So this
change also splits two cases of switching a call edge to a ref edge into
two separate APIs so that callers can clearly test for this and take the
easy path without invalidating when appropriate. This is particularly
important in this case as we expect most inlines to be between functions
in separate SCCs and so the common case is that we don't have to so
aggressively invalidate analyses.
The LCG API change in turn needed some basic cleanups and better testing
in its unittest. No interesting functionality changed there other than
more coverage of the returned sequence of SCCs.
While this seems like an obvious improvement over the current state, I'd
like to revisit the core concept of invalidating within the CG-update
layer at all. I'm wondering if we would be better served forcing the
callers to handle the invalidation beforehand in the cases that they
can handle it. An interesting example is when we want to teach the
inliner to *update and preserve* analyses. But we can cross that bridge
when we get there.
With this patch, the new pass manager an build all of the LLVM test
suite at -O3 and everything passes. =D I haven't bootstrapped yet and
I'm sure there are still plenty of bugs, but this gives a nice baseline
so I'm going to increasingly focus on fleshing out the missing
functionality, especially the bits that are just turned off right now in
order to let us establish this baseline.
llvm-svn: 290664
There are cases of AVX-512 instructions that have two possible encodings. This is the case with instructions that use vector registers with low indexes of 0 - 15 and do not use the zmm registers or the mask k registers.
The EVEX encoding prefix requires 4 bytes whereas the VEX prefix can take only up to 3 bytes. Consequently, using the VEX encoding for these instructions results in a code size reduction of ~2 bytes even though it is compiled with the AVX-512 features enabled.
Reviewers: Craig Topper, Zvi Rackoover, Elena Demikhovsky
Differential Revision: https://reviews.llvm.org/D27901
llvm-svn: 290663
when they are call edges at the leaf but may (transitively) be reached
via ref edges.
It turns out there is a simple rule: insert everything as a ref edge
which is a safe conservative default. Then we let the existing update
logic handle promoting some of those to call edges.
Note that it would be fairly cheap to make these call edges right away
if that is desirable by testing whether there is some existing call path
from the source to the target. It just seemed like slightly more
complexity in this code path that isn't strictly necessary. If anyone
feels strongly about handling this differently I'm happy to change it.
llvm-svn: 290649
due to a call cycle.
This actually crashed the ref removal before.
I've added a unittest that covers this kind of interesting graph
structure and mutation.
llvm-svn: 290645
currenty relies on the old PM's dependency system forming LCSSA.
The new PM will require a different design for this, and for now this is
causing most of the issues I'm currently seeing in testing. I'd like to
get to a testable baseline and then work on re-enabling things one at
a time.
llvm-svn: 290644
This adds a combine that canonicalizes a chain of inserts which broadcasts
a value into a single insert + a splat shufflevector.
This fixes PR31286.
Differential Revision: https://reviews.llvm.org/D27992
llvm-svn: 290641
Fix a warning detected by gcc 6:
warning: cast from type 'const void*' to type 'uint8_t* {aka unsigned char*}' casts away qualifiers [-Wcast-qual]
llvm-svn: 290618
Replace the use of grep with FileCheck. Tidy up some of the tests. A
few of the tests have been left as weak as previously, though some have
been made more stringent.
llvm-svn: 290616
There is no need to do this within an analysis. That method shouldn't
even be reached if this predicate holds as the actual useful
optimization is in the analysis manager itself.
llvm-svn: 290614
BasicAA in r290603.
I've kept the basic testing in the new PM test file as that also covers
the AAManager invalidation logic. If/when there is a good place for
broader AA testing it could move there.
This test is somewhat unsatisfying as I can't get it to fail even with
ASan outside of explicit checks of the invalidation. Apparently we don't
yet have any test coverage of the BasicAA code paths using either the
domtree or loopinfo -- I made both of them always be null and check-llvm
passed.
llvm-svn: 290612
The effect of the bug was that we would incorrectly create summaries
for global and weak values defined in module asm (since we were
essentially testing for bit 1 which is SF_Undefined, and the
RecordStreamer ignores local undefined references). This would have
resulted in conservatively disabling importing of anything referencing
globals and weaks defined in module asm. Added these cases to the test
which now fails without this bug fix.
Fixes PR31459.
llvm-svn: 290610
The feature allows for conditional assembly, filling the entries
of .amd_kernel_code_t etc.
Symbols are defined with value 0 at the beginning of each kernel scope.
After each register usage, the respective symbol is set to:
value = max( value, ( register index + 1 ) )
Thus, at the end of scope the value represents a count of used registers.
Kernel scopes begin at .amdgpu_hsa_kernel directive, end at the
next .amdgpu_hsa_kernel (or EOF, whichever comes first). There is also
dummy scope that lies from the beginning of source file til the
first .amdgpu_hsa_kernel.
Test added.
Differential Revision: https://reviews.llvm.org/D27859
llvm-svn: 290608
Because operand was not marked as seen it was visited twice.
It doesn't change behavior of optimization, it just saves redudant
visit, so no test changes.
llvm-svn: 290607
This requires custom handling because BasicAA caches handles to other
analyses and so it needs to trigger indirect invalidation.
This fixes one of the common crashes when using the new PM in real
pipelines. I've also tweaked a regression test to check that we are at
least handling the most immediate case.
I'm going to work at re-structuring this test some to both scale better
(rather than all being in one file) and check more invalidation paths in
a follow-up commit, but I wanted to get the basic bug fix in place.
llvm-svn: 290603
not really wired into the loop pass manager in a way that will let us
productively use these passes yet.
This lets the new PM get farther in basic testing which is useful for
establishing a good baseline of "doesn't explode". There are still
plenty of crashers in basic testing though, this just gets rid of some
noise that is well understood and not representing a specific or narrow
bug.
llvm-svn: 290601
inter-analysis dependencies) to use the new invalidation infrastructure.
This teaches it to invalidate itself when any of the peer function
AA results that it uses become invalid. We do this by just tracking the
originating IDs. I've kept it in a somewhat clunky API since some users
of AAResults are outside the new PM right now. We can clean this API up
if/when those users go away.
Secondly, it uses the registration on the outer analysis manager proxy
to trigger deferred invalidation when a module analysis result becomes
invalid.
I've included test cases that specifically try to trigger use-after-free
in both of these cases and they would crash or hang pretty horribly for
me even without ASan. Now they work nicely.
The `InvalidateAnalysis` utility pass required some tweaking to be
useful in this context and it still is pretty garbage. I'd like to
switch it back to the previous implementation and teach the explicit
invalidate method on the AnalysisManager to take care of correctly
triggering indirect invalidation, but I wanted to go ahead and send this
out so folks could see how all of this stuff works together in practice.
And, you know, that it does actually work. =]
Differential Revision: https://reviews.llvm.org/D27205
llvm-svn: 290595
that require deferred invalidation.
This handles the other real-world invalidation scenario that we have
cases of: a function analysis which caches references to a module
analysis. We currently do this in the AA aggregation layer and might
well do this in other places as well.
Since this is relative rare, the technique is somewhat more cumbersome.
Analyses need to register themselves when accessing the outer analysis
manager's proxy. This proxy is already necessarily present to allow
access to the outer IR unit's analyses. By registering here we can track
and trigger invalidation when that outer analysis goes away.
To make this work we need to enhance the PreservedAnalyses
infrastructure to support a (slightly) more explicit model for "sets" of
analyses, and allow abandoning a single specific analyses even when
a set covering that analysis is preserved. That allows us to describe
the scenario of preserving all Function analyses *except* for the one
where deferred invalidation has triggered.
We also need to teach the invalidator API to support direct ID calls
instead of always going through a template to dispatch so that we can
just record the ID mapping.
I've introduced testing of all of this both for simple module<->function
cases as well as for more complex cases involving a CGSCC layer.
Much like the previous patch I've not tried to fully update the loop
pass management layer because that layer is due to be heavily reworked
to use similar techniques to the CGSCC to handle updates. As that
happens, we'll have a better testing basis for adding support like this.
Many thanks to both Justin and Sean for the extensive reviews on this to
help bring the API design and documentation into a better state.
Differential Revision: https://reviews.llvm.org/D27198
llvm-svn: 290594
most of the inliner test cases.
The inliner involves a bunch of interesting code and tends to be where
most of the issues I've seen experimenting with the new PM lie. All of
these test cases pass, but I'd like to keep some more thorough coverage
here so doing a fairly blanket enabling.
There are a handful of interesting tests I've not enabled yet because
they're focused on the always inliner, or on functionality that doesn't
(yet) exist in the inliner.
llvm-svn: 290592
skipping indirectly recursive inline chains.
To do this, we implicitly build an inline stack for each callsite and
check prior to inlining that doing so would not form a cycle. This uses
the exact same technique and even shares some code with the legacy PM
inliner.
This solution remains deeply unsatisfying to me because it means we
cannot actually iterate the inliner externally. Doing so would not be
able to easily detect and avoid such cycles. Some day I would very much
like to have a solution that works without this internal state to detect
cycles, but this is not that day.
llvm-svn: 290590
Nothing really interesting here, but I had to improve the test to use
variables rather than hard coding value names as we happen to end up
with different value names in the new PM.
llvm-svn: 290589
We currently ignore the `allocsize` attribute on functions calls with
the `nobuiltin` attribute when trying to lower `@llvm.objectsize`. We
shouldn't care about `nobuiltin` here: `allocsize` is explicitly added
by the user, not inferred based on a function's symbol.
llvm-svn: 290588
This also makes us no longer check for `allocsize` on intrinsic calls.
This shouldn't matter, since intrinsics should provide the information
we get from `allocsize` on their own.
llvm-svn: 290585
PMULDQ/PMULUDQ vXi64 instructions only use the even numbered v2Xi32 input elements which SimplifyDemandedVectorElts should try and use.
This builds on r290554 which added supported for 128 and 256-bit.
llvm-svn: 290582
constant expression and to correctly form function reference edges
through them without crashing because one of the operands (the
`BasicBlock` isn't actually a constant despite being an operand of
a constant).
llvm-svn: 290581
The 128 and 256 bit masked intrinsics are currently unused by clang. The sse and avx2 unmasked intrinsics are used instead. The new 512-bit intrinsic will be used to do the same. Then all masked versions will removed and autoupgraded.
llvm-svn: 290573
This mostly involved converting from grep to FileCheck and tidying up
the IR used.
In one case (invoke_test-3.ll) the test had become completely pointless
as we use 'resume' rather than 'unwind' now, and even then it did not
occur at the end of the line.
llvm-svn: 290570
An earlier commit added support for unmasked scalar operations. At that time isel wouldn't generate an optimal sequence for masked operations, but that has now been fixed.
llvm-svn: 290566
These particular sequences will be generated after a future change to teach InstCombine to turn masked scalar arithmetic intrinsics into native IR.
llvm-svn: 290563
inside of `InlineFunction`. Prior to this, call instructions are
specifically being rewritten and replaced within the inlined region,
invalidating some of the call sites.
Several of these regions are using the same technique to walk the
inlined region so this seems clearly safe up to this point.
I've also added a short circuit to the scan for call sites based on what
other code is doing.
With this, the most common crash I've found in the new inliner code is
fixed. I've turned it on for another test case that covers this
scenario.
I'll make my way through most of the other inliner test cases
just to get some easy coverage next.
llvm-svn: 290562
removing fully-dead comdats without removing dead entries in comdats
with live members.
This factors the core logic out of the current inliner's internals to
a reusable utility and leverages that in both places. The factored out
code should also be (minorly) more efficient in cases where we have very
few dead functions or dead comdats to consider.
I've added a test case to cover this behavior of the always inliner.
This is the last significant bug in the new PM's always inliner I've
found (so far).
llvm-svn: 290557
PMULDQ/PMULUDQ vXi64 instructions only use the even numbered v2Xi32 input elements which SimplifyDemandedVectorElts should try and use.
Differential Revision: https://reviews.llvm.org/D28119
llvm-svn: 290554
Mostly use a bit more idiomatic C++ where we can,
so we can combine some things later.
Reviewers: davide
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28111
llvm-svn: 290550
The current GVN algorithm folds unconditional branches to, it claims,
expose more PRE oportunities. The folding, if really needed,
(which is not sure, as it's not really proved it improves analysis)
can be done by an earlier cleanup pass instead of GVN itself.
Ack'ed/SGTM'd by Daniel Berlin.
Differential Revision: https://reviews.llvm.org/D28117
llvm-svn: 290546
systematically and document in the test what all is going on.
This replaces the PR-named test that was the only coverage for GlobalDCE
and comdats previously. I wrote this because I wasn't certain how
comdat DCE was supposed to work and wanted to step through what
GlobalDCE did to fully understand it. After talking to folks and reading
the code and really staring at things it all makes sense but it seemed
good to help write down some of this in a more explicit and fully
covering test case.
For example, it seemed like a bug that GlobalDCE didn't consider comdat
participation of ifuncs. Specifically it seemed like an accident because
testing didn't really cover that case. But in fact, ifuncs specifically
cannot participate in a comdat despite having that API. The new test
case covers this and explicitly documents that DCE gets to fire here
even though there are comdats involved.
Also, we didn't have any positive tests for the challenging cases such
as usage cycles between comdat participants that might make them seem
alive except that there is no external edge into the cycle.
llvm-svn: 290537
Summary:
I only do this for unmasked cases for now because isel is failing to fold the mask. I'll try to fix that soon.
I'll do the same thing for packed add/sub/mul/div in a future patch.
Reviewers: delena, RKSimon, zvi, craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27879
llvm-svn: 290535
Summary:
This patch adds support for converting the masked vpermv intrinsics into shufflevector instructions if the indices are constants.
We also need to wrap a select instruction around the shuffle to take care of the masking part. InstCombine will take care of optimizing the select if the mask is constant so I didn't bother checking for that.
Reviewers: zvi, delena, spatel, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27825
llvm-svn: 290530
This recommits r290512 that was reverted when MSVC failed to compile it. Since
then I've played with various approaches using rextester.com (where I was able
to reproduce the failure) and think that I have a solution thanks in part to
the help of Dave Blaikie! It seems MSVC just has a defective `decltype` in this
version. Manually writing out the type seems to do the trick, even though it is
.... quite complicated.
Original commit message:
This allows both defining convenience iterator/range accessors on types
which walk across N different independent ranges within the object, and
more direct and simple usages with range based for loops such as shown
in the unittest. The same facilities are used for both. They end up
quite small and simple as it happens.
I've also switched an iterator on `Module` to use this. I would like to
add another convenience iterator that includes even more sequences as
part of it and seeing this one already present motivated me to actually
abstract it away and introduce a general utility.
Differential Revision: https://reviews.llvm.org/D28093
llvm-svn: 290528
multiple asynchronous RPC calls.
ParallelCallGroup allows multiple asynchronous calls to be dispatched,
and provides a wait method that blocks until all asynchronous calls have
been executed on the remote and all return value handlers run on the
local machine.
This will allow, for example, the JIT client to issue memory allocation calls
for all sections in parallel, then block until all memory has been allocated
on the remote and the allocated addresses registered with the client, at which
point the JIT client can proceed to applying relocations.
llvm-svn: 290523
This code doesn't work on MSVC for reasons that elude me and I've not
yet covinced a workaround to compile cleanly so reverting for now while
I play with it.
llvm-svn: 290513
This allows both defining convenience iterator/range accessors on types
which walk across N different independent ranges within the object, and
more direct and simple usages with range based for loops such as shown
in the unittest. The same facilities are used for both. They end up
quite small and simple as it happens.
I've also switched an iterator on `Module` to use this. I would like to
add another convenience iterator that includes even more sequences as
part of it and seeing this one already present motivated me to actually
abstract it away and introduce a general utility.
Differential Revision: https://reviews.llvm.org/D28093
llvm-svn: 290512
This makes it explicit what is the exact list to handle, and it
looks much more easy to manipulate and understand that the
previous custom tracking of min/max to express the range where
to look for.
Differential Revision: https://reviews.llvm.org/D28089
llvm-svn: 290507
whether functions are removed, and fix the new PM's always inliner to
actually pass this test.
Without this, the new PM's always inliner leaves all the functions
kicking around which won't work out very well given the semantics of
always inline.
Doing this really highlights how frustrating the current alwaysinline
semantic contract is though -- why can we put it on *external*
functions, etc?
Also I've added a number of tricky and interesting test cases for
removing functions with the always inliner. There is one remaining case
not handled -- fully removing comdats -- and I've left a FIXME about
this.
llvm-svn: 290457
Pretty boring and lame as-is but necessary. This is definitely a place
we'll end up with extension hooks longer term. =]
Differential Revision: https://reviews.llvm.org/D28076
llvm-svn: 290449
The pass creates some state which expects to be cleaned up by
a later instance of the same pass. opt-bisect happens to expose
this not ideal design because calling skipLoop() will result in
this state not being cleaned up at times and an assertion firing
in `doFinalization()`. Chandler tells me the new pass manager will
give us options to avoid these design traps, but until it's not ready,
we need a workaround for the current pass infrastructure. Fix provided
by Andy Kaylor, see the review for a complete discussion.
Differential Revision: https://reviews.llvm.org/D25848
llvm-svn: 290427
According to the Cortex-A57 doc, FDIV/FSQRT instructions should use F0 unit
(W-unit in AArch64SchedA57.td, the same as cryptography instructions),
not F1 unit (X-unit in td, like ASIMD absolute diff accum SABA/UABA).
This patch changes FDIV/FSQRT scheduling declarations to use A57UnitW
instead of A57UnitX. Also, latencies for those instructions are
corrected.
Patch by Andrew Zhogin.
llvm-svn: 290426