This is a new mode of migration, where we avoid modifying the original files but
we emit temporary files instead.
<path> will be used to keep migration process metadata. Currently the temporary files
that are produced are put in the system's temp directory but we can put them
in the <path> if is necessary.
Also introduce new ARC migration functions in libclang whose only purpose,
currently, is to accept <path> and provide pairs of original file/transformed file
to map from the originals to the files after transformations are applied.
Finally introduce the c-arcmt-test utility that exercises the new libclang functions,
update arcmt-test, and add tests for the whole process.
rdar://9735086.
llvm-svn: 134844
clang_codeCompleteGetContexts(), that provides the client with
information about the context in which code completion has occurred
and what kinds of entities make sense as completions at that
point. Patch by Connor Wakamo!
llvm-svn: 134615
Bendersky. Specifically:
* Implemented a new function in libclang: clang_isAttribute
* Fixing TranslationUnit.get_includes to only go through the argument
* buffer when it contains something. This fixed a crash on Windows
* clang_getFileName returns CXString, not char*. Made appropriate
* fixes in cindex.py - now the relevant tests pass and we can see the
* full locations correctly again (previously there was garbage in
* place of the file name)
* Exposed clang_getCursorDisplayName to the python bindings
llvm-svn: 134460
for a template template parameter.
Uses to follow.
I've also made the uniquing of SubstTemplateTemplateParmPacks
use a ContextualFoldingSet as a minor space efficiency.
llvm-svn: 134137
when the expression source range overlaps the declaration range.
This can happen for C++ constructor expressions whose range generally
include the variable declaration, e.g.:
MyCXXClass foo; // Make sure pointing at 'foo' returns a VarDecl cursor.
rdar://9124499.
llvm-svn: 133930
variable declaration that it belongs to.
This can happen for C++ constructor expressions whose range generally
include the variable declaration, e.g.:
MyCXXClass foo; // Make sure we don't annotate 'foo' as a CallExpr cursor.
rdar://9124499.
llvm-svn: 133929
MaterializeTemporaryExpr captures a reference binding to a temporary
value, making explicit that the temporary value (a prvalue) needs to
be materialized into memory so that its address can be used. The
intended AST invariant here is that a reference will always bind to a
glvalue, and MaterializeTemporaryExpr will be used to convert prvalues
into glvalues for that binding to happen. For example, given
const int& r = 1.0;
The initializer of "r" will be a MaterializeTemporaryExpr whose
subexpression is an implicit conversion from the double literal "1.0"
to an integer value.
IR generation benefits most from this new node, since it was
previously guessing (badly) when to materialize temporaries for the
purposes of reference binding. There are likely more refactoring and
cleanups we could perform there, but the introduction of
MaterializeTemporaryExpr fixes PR9565, a case where IR generation
would effectively bind a const reference directly to a bitfield in a
struct. Addresses <rdar://problem/9552231>.
llvm-svn: 133521
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
__builtin_astype(): Used to reinterpreted as another data type of the same size using for both scalar and vector data types.
Added test case.
llvm-svn: 132612
parameter types to be ill-formed. However, it relies on the
completeness of method parameter types when producing metadata, e.g.,
for a protocol, leading IR generating to crash in such cases.
Since there's no real way to tighten down the semantics of Objective-C
here without breaking existing code, do something safe but lame:
suppress the generation of metadata when this happens.
Fixes <rdar://problem/9123036>.
llvm-svn: 132171
Patch by Matthieu Monrocq with tweaks by me to avoid StringRefs in the static
diagnostic data structures, which resulted in a huge global-var-init function.
Depends on llvm commit r132046.
llvm-svn: 132047
type that turns one type into another. This is used as the basis to
implement __underlying_type properly - with TypeSourceInfo and proper
behavior in the face of templates.
llvm-svn: 132017
- New isDefined() function checks for deletedness
- isThisDeclarationADefinition checks for deletedness
- New doesThisDeclarationHaveABody() does what
isThisDeclarationADefinition() used to do
- The IsDeleted bit is not propagated across redeclarations
- isDeleted() now checks the canoncial declaration
- New isDeletedAsWritten() does what it says on the tin.
- isUserProvided() now correct (thanks Richard!)
This fixes the bug that we weren't catching
void foo() = delete;
void foo() {}
as being a redefinition.
llvm-svn: 131013
CXTranslationUnit_NestedMacroInstantiations, which indicates whether
we want to see "nested" macro instantiations (e.g., those that occur
inside other macro instantiations) within the detailed preprocessing
record. Many clients (e.g., those that only care about visible tokens)
don't care about this information, and in code that uses preprocessor
metaprogramming, this information can have a very high cost.
Addresses <rdar://problem/9389320>.
llvm-svn: 130990
which determines whether a particular file is actually a header that
is intended to be guarded from multiple inclusions within the same
translation unit.
llvm-svn: 130808
3 lines of code and improve a bunch of information in the libclang view
of the code.
Updates the two tests that exercise this with the new data, checking
that each new source location actually points back to the declared
template parameter.
llvm-svn: 130656
Patch authored by John Wiegley.
These are array type traits used for parsing code that employs certain
features of the Embarcadero C++ compiler: __array_rank(T) and
__array_extent(T, Dim).
llvm-svn: 130351
member function, i.e. something of the form 'x.f' where 'f' is a non-static
member function. Diagnose this in the general case. Some of the new diagnostics
are probably worse than the old ones, but we now get this right much more
universally, and there's certainly room for improvement in the diagnostics.
llvm-svn: 130239
Patch authored by David Abrahams.
These two expression traits (__is_lvalue_expr, __is_rvalue_expr) are used for
parsing code that employs certain features of the Embarcadero C++ compiler.
llvm-svn: 130122
compile time) and .gcda emission (at runtime). --coverage enables both.
This does not yet add the profile_rt library to the link step if -fprofile-arcs
is enabled when linking.
llvm-svn: 129956
adjust the a ending macro location to the end of the instantiation
location before adjusting it to the end of the token. Fixes
<rdar://problem/9021561>.
llvm-svn: 129872
during deserialization from a precompiled header, and update all of
its callers to note when this problem occurs and recover (more)
gracefully. Fixes <rdar://problem/9119249>.
llvm-svn: 129839
when building with Visual Studio. `clang.dll' and `clang.exe' would
have the same `clang.ilk' and `clang.pdb'. On a serial build those
files would be overwritten as clang.exe/clang.dll are created. On a
parallel build there is a risk of both files being written at the same
time. On that case VS fails.
llvm-svn: 129239
The idea is that you can create a VarDecl with an unknown type, or a
FunctionDecl with an unknown return type, and it will still be valid to
access that object as long as you explicitly cast it at every use. I'm
still going back and forth about how I want to test this effectively, but
I wanted to go ahead and provide a skeletal implementation for the LLDB
folks' benefit and because it also improves some diagnostic goodness for
placeholder expressions.
llvm-svn: 129065
which versions of an OS provide a certain facility. For example,
void foo()
__attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6)));
says that the function "foo" was introduced in 10.2, deprecated in
10.4, and completely obsoleted in 10.6. This attribute ties in with
the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that
we want to deploy back to Mac OS X 10.1). There are several concrete
behaviors that this attribute enables, as illustrated with the
function foo() above:
- If we choose a deployment target >= Mac OS X 10.4, uses of "foo"
will result in a deprecation warning, as if we had placed
attribute((deprecated)) on it (but with a better diagnostic)
- If we choose a deployment target >= Mac OS X 10.6, uses of "foo"
will result in an "unavailable" warning (in C)/error (in C++), as
if we had placed attribute((unavailable)) on it
- If we choose a deployment target prior to 10.2, foo() is
weak-imported (if it is a kind of entity that can be weak
imported), as if we had placed the weak_import attribute on it.
Naturally, there can be multiple availability attributes on a
declaration, for different platforms; only the current platform
matters when checking availability attributes.
The only platforms this attribute currently works for are "ios" and
"macosx", since we already have -mxxxx-version-min flags for them and we
have experience there with macro tricks translating down to the
deprecated/unavailable/weak_import attributes. The end goal is to open
this up to other platforms, and even extension to other "platforms"
that are really libraries (say, through a #pragma clang
define_system), but that hasn't yet been designed and we may want to
shake out more issues with this narrower problem first.
Addresses <rdar://problem/6690412>.
As a drive-by bug-fix, if an entity is both deprecated and
unavailable, we only emit the "unavailable" diagnostic.
llvm-svn: 128127
This change requires making a bunch of fundamental Clang structures (optionally) reference counted to allow correct
ownership semantics of these objects (e.g., ASTContext) to play out between an active ASTUnit and CompilerInstance
object.
llvm-svn: 128011
walk the preprocessing record *before* walking the declarations, so
they we pretend that we actually respect the phases of translation.
We still walk the preprocessing record after the declarations when
performing token annotation or finding the cursor at a location, since
those routines depend on those semantics.
Fixes <rdar://problem/9137195>.
llvm-svn: 127776
the program name, if it includes it as proper prefix. This makes calling
clang with -ccc-host-triple x86_64-linux the same as calling it with the
name x86_64-linux-clang.
llvm-svn: 127753
On Windows only the shared library is created. The reason for this is
that clang.lib the static library would clash with clang.lib the
export library of the dll.
llvm-svn: 127566
Cygwin's ctype.h says;
/* These macros are intentionally written in a manner that will trigger
a gcc -Wall warning if the user mistakenly passes a 'char' instead
of an int containing an 'unsigned char'.
(snip) */
llvm-svn: 127308
should report the original file name for contents of files that were overriden by other files,
otherwise it should report the name of the new file. Default is true.
Also add similar field in PreprocessorOptions and pass similar parameter in ASTUnit::LoadFromCommandLine.
llvm-svn: 127289
Allow remapping a file by specifying another filename whose contents should be loaded if the original
file gets loaded. This allows to override files without having to create & load buffers in advance.
llvm-svn: 127052
template arguments. I believe that this is the last place in the AST
where we were storing a source range for a nested-name-specifier
rather than a proper nested-name-specifier location structure. (Yay!)
There is still a lot of cleanup to do in the TreeTransform, which
doesn't take advantage of nested-name-specifiers with source-location
information everywhere it could.
llvm-svn: 126844
template specialization types. There are still a few rough edges to
clean up with some of the parser actions dropping
nested-name-specifiers too early.
llvm-svn: 126776
nested-name-speciciers within elaborated type names, e.g.,
enum clang::NestedNameSpecifier::SpecifierKind
Fixes in this iteration include:
(1) Compute the type-source range properly for a dependent template
specialization type that starts with "template template-id ::", as
in a member access expression
dep->template f<T>::f()
This is a latent bug I triggered with this change (because now we're
checking the computed source ranges for dependent template
specialization types). But the real problem was...
(2) Make sure to set the qualifier range on a dependent template
specialization type appropriately. This will go away once we push
nested-name-specifier locations into dependent template
specialization types, but it was the source of the
valgrind errors on the buildbots.
llvm-svn: 126765
information for qualifier type names throughout the parser to address
several problems.
The commit message from r126737:
Push nested-name-specifier source location information into elaborated
name types, e.g., "enum clang::NestedNameSpecifier::SpecifierKind".
Aside from the normal changes, this also required some tweaks to the
parser. Essentially, when we're looking at a type name (via
getTypeName()) specifically for the purpose of creating an annotation
token, we pass down the flag that asks for full type-source location
information to be stored within the returned type. That way, we retain
source-location information involving nested-name-specifiers rather
than trying to reconstruct that information later, long after it's
been lost in the parser.
With this change, test/Index/recursive-cxx-member-calls.cpp is showing
much improved results again, since that code has lots of
nested-name-specifiers.
llvm-svn: 126748
name types, e.g., "enum clang::NestedNameSpecifier::SpecifierKind".
Aside from the normal changes, this also required some tweaks to the
parser. Essentially, when we're looking at a type name (via
getTypeName()) specifically for the purpose of creating an annotation
token, we pass down the flag that asks for full type-source location
information to be stored within the returned type. That way, we retain
source-location information involving nested-name-specifiers rather
than trying to reconstruct that information later, long after it's
been lost in the parser.
With this change, test/Index/recursive-cxx-member-calls.cpp is showing
much improved results again, since that code has lots of
nested-name-specifiers.
llvm-svn: 126737
DependentNameTypeLoc. Teach the recursive AST visitor and libclang how to
walk DependentNameTypeLoc nodes.
Also, teach libclang about TypedefDecl source ranges, so that we get
those. The massive churn in test/Index/recursive-cxx-member-calls.cpp
is a good thing: we're annotating a lot more of this test correctly
now.
llvm-svn: 126729
UnresolvedLookupExpr and UnresolvedMemberExpr.
Also, improve the computation that checks whether the base of a member
expression (either unresolved or dependent-scoped) is implicit. The
previous check didn't cover all of the cases we use in our
representation, which threw off source-location information for these
expressions (which, in turn, caused some breakage in libclang's token
annotation).
llvm-svn: 126681
CXXDependentScopeMemberExpr, and clean up instantiation of
nested-name-specifiers with dependent template specialization types in
the process.
llvm-svn: 126663
This isn't totally complete. Right now scan-build uses some heuristics to determine
which checkers are enabled by default, but it cannot always tell which checkers
are not enabled.
llvm-svn: 126521
UnresolvedUsingValueDecl to use NestedNameSpecifierLoc rather than the
extremely-lossy NestedNameSpecifier/SourceRange pair it used to use,
improving source-location information.
Various infrastructure updates to support NestedNameSpecifierLoc:
- AST/PCH (de-)serialization
- Recursive AST visitor
- libclang traversal (including the first tests of this
functionality)
llvm-svn: 126459
way it keeps track of namespaces. Previously, we would map from the
namespace alias to its underlying namespace when building a
nested-name-specifier, losing source information in the process.
llvm-svn: 126358
This removes the final dependency edge from any lib outside of CodeGen
to core. As a result we can, and do, trim the dependency on core
from libclang, PrintFunctionNames, the unit tests and c-index-test.
While at it, review and trim other unneeded dependencies.
llvm-svn: 125820
class and to bind the shared value using OpaqueValueExpr. This fixes an
unnoticed problem with deserialization of these expressions where the
deserialized form would lose the vital pointer-equality trait; or rather,
it fixes it because this patch also does the right thing for deserializing
OVEs.
Change OVEs to not be a "temporary object" in the sense that copy elision is
permitted.
This new representation is not totally unawkward to work with, but I think
that's really part and parcel with the semantics we're modelling here. In
particular, it's much easier to fix things like the copy elision bug and to
make the CFG look right.
I've tried to update the analyzer to deal with this in at least some
obvious cases, and I think we get a much better CFG out, but the printing
of OpaqueValueExprs probably needs some work.
llvm-svn: 125744
LabelDecl and LabelStmt. There is a 1-1 correspondence between the
two, but this simplifies a bunch of code by itself. This is because
labels are the only place where we previously had references to random
other statements, causing grief for AST serialization and other stuff.
This does cause one regression (attr(unused) doesn't silence unused
label warnings) which I'll address next.
This does fix some minor bugs:
1. "The only valid attribute " diagnostic was capitalized.
2. Various diagnostics printed as ''labelname'' instead of 'labelname'
3. This reduces duplication of label checking between functions and blocks.
Review appreciated, particularly for the cindex and template bits.
llvm-svn: 125733
We now rely on 'clang --analyze' to provide the default set of checkers. We're
still working on the new '-analyzer-checker <checker>' interface, and once
that's ready we'll wire it up to scan-build.
llvm-svn: 125712
code-completion results accessed via libclang, to extend the lifetime
of the allocator used for cached global code-completion results at
least until these completion results are destroyed. Fixes
<rdar://problem/8997369>.
llvm-svn: 125678
there were only three virtual methods of any significance.
The primary way to grab child iterators now is with
Stmt::child_range children();
Stmt::const_child_range children() const;
where a child_range is just a std::pair of iterators suitable for
being llvm::tie'd to some locals. I've left the old child_begin()
and child_end() accessors in place, but it's probably a substantial
penalty to grab the iterators individually now, since the
switch-based dispatch is kindof inherently slower than vtable
dispatch. Grabbing them together is probably a slight win over the
status quo, although of course we could've achieved that with vtables, too.
I also reclassified SwitchCase (correctly) as an abstract Stmt
class, which (as the first such class that wasn't an Expr subclass)
required some fiddling in a few places.
There are somewhat gross metaprogramming hooks in place to ensure
that new statements/expressions continue to implement
getSourceRange() and children(). I had to work around a recent clang
bug; dgregor actually fixed it already, but I didn't want to
introduce a selfhosting dependency on ToT.
llvm-svn: 125183
whose inode has changed since the file was first created and that is
being seen through a different path name (e.g., due to symlinks or
relative path elements), such that its FileEntry pointer doesn't match
a known FileEntry pointer. Since this requires a system call (to
stat()), we only perform this deeper checking if we can't find the
file by comparing FileEntry pointers.
Also, add a micro-optimization where we don't bother to compute line
numbers when given the location (1, 1). This improves the
efficiency of clang_getLocationForOffset().
llvm-svn: 124800
BumpPtrAllocator, rather than manually new/delete'ing them. This
optimization also allows us to avoid allocating memory for and copying
constant strings (e.g., "return", "class").
This also required embedding the priority and availability of results
within the code completion string, to avoid extra memory allocation
within libclang.
llvm-svn: 124673
clang_getDeclObjCTypeEncoding(); use ASTContext's methods instead,
which will (lazily) create the type as needed. Otherwise, we can end
up with null QualTypes.
llvm-svn: 124133
template template parameter pack that cannot be fully expanded because
its enclosing pack expansion could not be expanded. This form of
TemplateName plays the same role as SubstTemplateTypeParmPackType and
SubstNonTypeTemplateParmPackExpr do for template type parameter packs
and non-type template parameter packs, respectively.
We should now handle these multi-level pack expansion substitutions
anywhere. The largest remaining gap in our variadic-templates support
is that we cannot cope with non-type template parameter packs whose
type is a pack expansion.
llvm-svn: 123521
that captures the substitution of a non-type template argument pack
for a non-type template parameter pack within a pack expansion that
cannot be fully expanded. This follows the approach taken by
SubstTemplateTypeParmPackType.
llvm-svn: 123506
expansions with something that is easier to use correctly: a new
template argment kind, rather than a bit on an existing kind. Update
all of the switch statements that deal with template arguments, fixing
a few latent bugs in the process. I"m happy with this representation,
now.
And, oh look! Template instantiation and deduction work for template
template argument pack expansions.
llvm-svn: 122896
template argument (described by an expression, of course). For
example:
template<int...> struct int_tuple { };
template<int ...Values>
struct square {
typedef int_tuple<(Values*Values)...> type;
};
It also lays the foundation for pack expansions in an initializer-list.
llvm-svn: 122751
16-bits in size. Implement this by splitting WChar into two enums, like we have
for char. This fixes a miscompmilation of XULRunner, PR8856.
llvm-svn: 122558
layout. :)
Rename the 'EntoSA' directories to 'StaticAnalyzer'.
Internally we will still use the 'ento' namespace
for the analyzer engine (unless there are further
sabre rattlings...).
llvm-svn: 122514
take into account the region of interest. Otherwise, we may fail to
traverse some important preprocessed entity cursors.
Fixes <rdar://problem/8554072>.
llvm-svn: 122350
clang_getCursorLexicalParent() to cope with class and function
templates, along with the parent of the translation unit. Fixes PR8761
and PR8766.
llvm-svn: 122324
area of printing template arguments. The functionality changes here
are limited to cases of variadic templates that aren't yet enabled.
llvm-svn: 122250
pack expansions, e.g. given
template<typename... Types> struct tuple;
template<typename... Types>
struct tuple_of_refs {
typedef tuple<Types&...> types;
};
the type of the "types" typedef is a PackExpansionType whose pattern
is Types&.
This commit introduces support for creating pack expansions for
template type arguments, as above, but not for any other kind of pack
expansion, nor for any form of instantiation.
llvm-svn: 122223
common base for ExtQuals and Type that stores the underlying type
pointer. This results in a 2% performance win for -emit-llvm on a
typical C file, with 1% memory growth in the AST.
Note that there is an API change in this optimization:
QualType::getTypePtr() can no longer be invoked on a NULL
QualType. If the QualType might be NULL, use
QualType::getTypePtrOrNull(). I've audited all uses of getTypePtr() in
the code base and changed the appropriate uses over to
getTypePtrOrNull().
A future optimization opportunity would be to distinguish between
cast/dyn_cast and cast_or_null/dyn_cast_or_null; for the former, we
could use getTypePtr() rather than getTypePtrOrNull(), to take another
branch out of the cast/dyn_cast implementation.
llvm-svn: 121489
struct X {
X() : au_i1(123) {}
union {
int au_i1;
float au_f1;
};
};
clang will now deal with au_i1 explicitly as an IndirectFieldDecl.
llvm-svn: 120900
trap the serialized preprocessing records (macro definitions, macro
instantiations, macro definitions) from the generation of the
precompiled preamble, then replay those when walking the list of
preprocessed entities. This eliminates a bug where clang_getCursor()
wasn't able to find preprocessed-entity cursors in the preamble.
llvm-svn: 120396
clang_getCursor() via -cursor-at=??? and CINDEXTEST_EDITING is set in
the environment. This mirrors how we test code completion and
source-loading in the presence of this environment variable.
llvm-svn: 120392
FileSystemOpts through a ton of apis, simplifying a lot of code.
This also fixes a latent bug in ASTUnit where it would invoke
methods on FileManager without creating one in some code paths
in cindextext.
llvm-svn: 120010
-Move the stuff of Diagnostic related to creating/querying diagnostic IDs into a new DiagnosticIDs class.
-DiagnosticIDs can be shared among multiple Diagnostics for multiple translation units.
-The rest of the state in Diagnostic object is considered related and tied to one translation unit.
-Have Diagnostic point to the SourceManager that is related with. Diagnostic can now accept just a
SourceLocation instead of a FullSourceLoc.
-Reflect the changes to various interfaces.
llvm-svn: 119730
an implicit "this"; it causes clang_getCursor() to find the implicit
"this" expression (which isn't written in the source!) rather than the
actual member.
llvm-svn: 119516
interest (e.g., as used by clang_getCursor()), count the
decl-specifier-seq as part of the source range, as we do for
clang_annotateTokens(). Makes clang_getCursor() work properly for the
result types of functions, for example.
llvm-svn: 119514
we were just getting a range covering only the property name, which is
certainly not correct (and broke token annotation, among other
things).
Also, teach libclang about the relationship between
@synthesize/@dynamic and @property, so we get property name and
cursor-reference information for @synthesize and @dynamic.
llvm-svn: 119409
for the backing of generated USRs. This optmizes
for the case when a client generates a sequence
of USRs in sequence, disposing of them soon
after generating them. By using a string buffer,
we recycle malloc'ed memory instead of constantly
malloc'ing and copying strings.
llvm-svn: 119338
but to wrap both an ASTUnit and a "string pool"
that will be used for fast USR generation.
This requires a bunch of mechanical changes, as
there was a ton of code that assumed that CXTranslationUnit
and ASTUnit* were the same.
Along with this change, introduce CXStringBuf,
which provides an llvm::SmallVector<char> backing
for repeatedly generating CXStrings without a huge
amount of malloc() traffic. This requires making
some changes to the representation of CXString
by renaming a few fields (but keeping the size
of the object the same).
llvm-svn: 119337
caching global code-completion results. In particular, don't perform
either operation the first time we parse, but do both after the first
reparse.
llvm-svn: 119285
the Stmt* visitation in CursorVisitor to be
data-recursive.
Since AnnotationTokensWorker explicitly calls
CursorVisitor::VisitChildren(), it essentially
transforms the data-recursive algorithm in
CursorVisitor back into a non-data recursive one.
This is particularly bad because the data-recursive
algorithm uses more stack space per stack frame,
which can cause us to blow the stack in some cases.
"Fix" this by making the stack that AnnotationTokensWorker
runs in really huge. The real fix is to modify
AnnotationTokensWorker not to do the explicit
recursive call.
llvm-svn: 119047
is gradually becoming more data recursive, AnnotateTokensVisitor does its own recursive call
within the visitor that can still blow out the stack. This can potentially be reworked to avoid this,
but for now just do token annotation on a separate thread.
llvm-svn: 118783
diagnostic-capturing client lives as long as the ASTUnit itself
does. Otherwise, we can end up with crashes when we get a diagnostic
outside of parsing/code completion. The circumstances under which this
happen are really hard to reproduce, because a file needs to change
from under us.
llvm-svn: 118751
location where we're spelling a token even within a
macro. clang_getInstantiationLocation() tells where we instantiated
the macro.
I'm still not thrilled with the CXSourceLocation/CXSourceRange APIs,
since they gloss over macro-instantiation information.
Take 2: this time, adjusted tests appropriately and used a "simple"
approach to the spelling location.
llvm-svn: 118495
location where we're spelling a token even within a
macro. clang_getInstantiationLocation() tells where we instantiated
the macro.
I'm still not thrilled with the CXSourceLocation/CXSourceRange APIs,
since they gloss over macro-instantiation information.
llvm-svn: 118492
to deeply nested BinaryOperators. This is done by turning the explicit recursion into being data recursive.
Fixes: <rdar://problem/8289205>
llvm-svn: 118444
abstractions (e.g., TemplateArgumentListBuilder) that were designed to
support variadic templates. Only a few remnants of variadic templates
remain, in the parser (parsing template type parameter packs), AST
(template type parameter pack bits and TemplateArgument::Pack), and
Sema; these are expected to be used in a future implementation of
variadic templates.
But don't get too excited about that happening now.
llvm-svn: 118385
CXXConstructorExpr/CXXTemporaryObjectExpr references the constructor
it calls. Then, tweak clang_getCursor() to prefer such a call over a
type reference to the type being called.
llvm-svn: 118297