We have the `RelSymbol<ELFT>` struct and can use it instead
of `std::pair<const Elf_Sym *, std::string>` in a few methods.
This is a bit cleaner.
Differential revision: https://reviews.llvm.org/D87092
The "restrict" keyword is illegal in C++, however, many libc
implementations use the "__restrict" compiler intrinsic in functions
prototypes. The "__restrict" keyword qualifies a type as a restricted type
even in C++.
In case of any non-C99 languages, we don't want to match based on the
restrict qualifier because we cannot know if the given libc implementation
qualifies the paramter type or not.
Differential Revision: https://reviews.llvm.org/D87097
This change implements pragma STDC FENV_ROUND, which is introduced by
the extension to standard (TS 18661-1). The pragma is implemented only
in frontend, it sets apprpriate state of FPOptions stored in Sema. Use
of these bits in constant evaluation adn/or code generator is not in the
scope of this change.
Parser issues warning on unsuppored pragma when it encounteres pragma
STDC FENV_ROUND, however it makes syntax checks and updates Sema state
as if the pragma were supported.
Primary purpose of the partial implementation is to facilitate
development of non-default floating poin environment. Previously a
developer cannot set non-default rounding mode in sources, this mades
preparing tests for say constant evaluation substantially complicated.
Differential Revision: https://reviews.llvm.org/D86921
This is one of the most expensive tests and runs for nearly half a minute on
my machine. Beside this test just doing a lot of work by iterating 15k times on
one ValueObject (which seems to be the point), it also runs this for every
debug info variant which doesn't seem relevant to just iterating ValueObject.
This marks it as no_debug_info_test to only run one debug info variation
and cut down the runtime to around 7 seconds on my machine.
I have fixed up some more ElementCount/TypeSize related warnings in
the following tests:
CodeGen/AArch64/sve-split-extract-elt.ll
CodeGen/AArch64/sve-split-insert-elt.ll
In SelectionDAG::CreateStackTemporary we were relying upon the implicit
cast from TypeSize -> uint64_t when calling MachineFrameInfo::CreateStackObject.
I've fixed this by passing in the known minimum size instead, which I
believe is fine because the associated stack id indicates whether this
is a scalable object or not.
I've also fixed up a case in TargetLowering::SimplifyDemandedBits when
extracting a vector element from a scalable vector. The result is a scalar,
hence it wasn't caught at the start of the function. If the vector is
scalable we just bail out for now.
Differential Revision: https://reviews.llvm.org/D86431
This patch updates MemCpyOpt to preserve MemorySSA. It uses the
MemoryDef at the insertion point of the builder and inserts the new def
after that def.
In some cases, we just modify a memory instruction. In that case, get
the defining access, then remove the memory access and add a new one.
If the defining access is in a different block, insert a new def at the
beginning of the current block, otherwise after the defining access.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D86651
Historically, the operations in the MLIR's LLVM dialect only checked that the
operand are of LLVM dialect type without more detailed constraints. This was
due to LLVM dialect types wrapping LLVM IR types and having clunky verification
methods. With the new first-class modeling, it is possible to define type
constraints similarly to other dialects and use them to enforce some
correctness rules in verifiers instead of having LLVM assert during translation
to LLVM IR. This hardening discovered several issues where MLIR was producing
LLVM dialect operations that cannot exist in LLVM IR.
Depends On D85900
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D85901
This reverts commit f369d51896. The bug this
fixes was already fixed by 1c5a0cb1c3 with the
same approach and this commit is now just giving the variable a second fallback
value.
The implementation is not fully standards compliant in the sense that
errno is not set on error, and floating point exceptions are not raised.
Subnormal range and normal range are tested separately in the tests.
Reviewed By: lntue
Differential Revision: https://reviews.llvm.org/D86666
When allowed, use 32-bit indices rather than 64-bit indices in the
SIMD computation of masks. This runs up to 2x and 4x faster on
a number of AVX2 and AVX512 microbenchmarks.
Reviewed By: bkramer
Differential Revision: https://reviews.llvm.org/D87116
The new feature in GitHub called 'GitHub Codespaces' generates a
pythonenv3.8 directory in the root level of the llvm-project git
checkout. So I am adding that directory to the .gitignore.
See the following for more info:
https://github.com/features/codespaces
Differential Revision: https://reviews.llvm.org/D86846
Simplify:
defined(__ARM_DWARF_EH__) || !defined(__arm__)
to:
!defined(_LIBUNWIND_ARM_EHABI)
A later patch benefits from the simplicity. This change will result in
the two DWARF macros being defined when __USING_SJLJ_EXCEPTIONS__ is
defined, but:
* That's already the case with the __APPLE__ and _WIN32 clauses.
* That's also already the case with other architectures.
* With __USING_SJLJ_EXCEPTIONS__, most of the unwinder is #ifdef'ed
away.
Generally, when __USING_SJLJ_EXCEPTIONS__ is defined, most of the
libunwind code is removed by the preprocessor. e.g. None of the hpp
files are included, and almost all of the .c and .cpp files are defined
away, except in Unwind-sjlj.c. Unwind_AppleExtras.cpp is an exception
because it includes two hpp files, which it doesn't use. Remove the
unneeded includes for consistency with the general rule.
Reviewed By: steven_wu
Differential Revision: https://reviews.llvm.org/D86767
This adds the size to forward declared class DITypes, if the size is known.
Fixes an issue where we determine whether to emit fragments based on the
type size, so fragments would sometimes be incorrectly emitted if there
was no size.
Bug: https://bugs.llvm.org/show_bug.cgi?id=47338
Differential Revision: https://reviews.llvm.org/D87062
- When an operand is changed into an immediate value or like, ensure their
target flags being cleared or set properly.
Differential Revision: https://reviews.llvm.org/D87109
Previously we had two overloads where the only real difference beyond
parameter order was whether a reference parameter is const, where one
overload treated the reference parameter as an in-parameter and the
other treated it as an out-parameter!
Asan does not use metadata with primary allocators.
It should match AP64::kMetadataSize whic is 0.
Depends on D86917.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D86919
There are no know bugs related to this, still it may fix some latent ones.
Main concerns with preexisting code:
1. Inconsistent atomic/non-atomic access to the same field.
2. Assumption that bitfield chunk_state is always the first byte without
even taking into account endianness.
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D86917
Previously, this code discarded the result of CheckPlaceholderExpr for
non-matrix subexpressions. Not only is this wasteful, but it was creating a
Warc-repeated-use-of-weak false-positive on the attached testcase, since the
discarded expression was still registered as a use of the weak property.
rdar://66162246
Differential revision: https://reviews.llvm.org/D87102
This patch scales the energy computed by the Entropic schedule based on the
execution time of each input. The input execution time is compared with the
average execution time of inputs in the corpus, and, based on the amount by
which they differ, the energy is scaled from 0.1x (for inputs executing slow) to
3x (for inputs executing fast). Note that the exact scaling criteria and formula
is borrowed from AFL.
On FuzzBench, this gives a sizeable throughput increase, which in turn leads to
more coverage on several benchmarks. For details, see the following report.
https://storage.googleapis.com/fuzzer-test-suite-public/exectime-report/index.html
Differential Revision: https://reviews.llvm.org/D86092
This hashing scheme has been useful out of tree, and I want to start
experimenting with it. Specifically I want to experiment on the
MIRVRegNamer, MIRCanononicalizer, and eventually the MachineOutliner.
This diff is a first step, that optionally brings stable hashing to the
MIRVRegNamer (and as a result, the MIRCanonicalizer). We've tested this
hashing scheme on a lot of MachineOperand types that llvm::hash_value
can not handle in a stable manner.
This stable hashing was also the basis for
"Global Machine Outliner for ThinLTO" in EuroLLVM 2020
http://llvm.org/devmtg/2020-04/talks.html#TechTalk_58
Credits: Kyungwoo Lee, Nikolai Tillmann
Differential Revision: https://reviews.llvm.org/D86952
This also changes -lint from an analysis to a pass. It's similar to
-verify, and that is a normal pass, and lives in llvm/IR.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D87057
This patch adds an option "cross_over_uniform_dist", which, if 1, considers all
inputs in the corpus for the crossover input selection. More specifically, this
patch uses a uniform distribution of all inputs in the corpus for the CrossOver
input selection. Note that input selection for mutation is still fully
determined by the scheduling policy (i.e., vanilla or Entropic); the uniform
distribution only applies to the secondary input selection, only for the
crossover mutation of the base input chosen by the scheduling policy. This way
the corpus inputs that have useful fragments in them, even though they are
deprioritized by the scheduling policy, have chances of getting mixed with other
inputs that are prioritized and selected as base input for mutation.
Differential Revision: https://reviews.llvm.org/D86954
The tests are unsupported on linux, but they assert in
Thread::GetStopDescriptionRaw() because of empty stop reason
description. And it is empty because
InstrumentationRuntimeTSan::NotifyBreakpointHit() fails
to get report from InstrumentationRuntimeTSan::RetrieveReportData(),
which is possibly(?) the reason why this is unsupported on linux.
Add a dummy stop reason description for this case, which changes
the test result from failing to unsupported.
Although LLVM supports vectorization of loops containing log2, it did not support using SVML implementation of it. Added support so that when clang is invoked with -fveclib=SVML now an appropriate SVML library log2 implementation will be invoked.
Follow up on: https://reviews.llvm.org/D77114
Tests:
Added unit tests to svml-calls.ll, svml-calls-finite.ll. Can be run with llvm-lint.
Created a simple c++ file that tests log2, and used clang+ to build it, and output final assembly.
Reviewed By: wenlei, craig.topper
Differential Revision: https://reviews.llvm.org/D86730
Use forward declarations and move the include down to dependent files that actually use it.
This also exposes a number of implicit dependencies on KnownBits.h
Currently the libcxx/atomics/ext-int.verify.cpp test fails when run with
-std=c++03 because there's an extra error due to using list initialization. Fix
this by using parentheses instead.