We now, from clang, can turn arrays of
static short g_data[] = {16, 16, 16, 16, 16, 16, 16, 16, 0, 0, 0, 0, 0, 0, 0, 0};
into structs of the form
@g_data = internal global <{ [8 x i16], [8 x i16] }> ...
GlobalOpt will incorrectly SROA it, not realising that the access to the first
element may overflow into the second. This fixes it by checking geps more
thoroughly.
I believe this makes the globalsra-partial.ll test case invalid as the %i value
could be out of bounds. I've re-purposed it as a negative test for this case.
Differential Revision: https://reviews.llvm.org/D49816
llvm-svn: 338192
Summary:
Support for this option is needed for building Linux kernel.
This is a very frequently requested feature by kernel developers.
More details : https://lkml.org/lkml/2018/4/4/601
GCC option description for -fdelete-null-pointer-checks:
This Assume that programs cannot safely dereference null pointers,
and that no code or data element resides at address zero.
-fno-delete-null-pointer-checks is the inverse of this implying that
null pointer dereferencing is not undefined.
This feature is implemented in LLVM IR in this CL as the function attribute
"null-pointer-is-valid"="true" in IR (Under review at D47894).
The CL updates several passes that assumed null pointer dereferencing is
undefined to not optimize when the "null-pointer-is-valid"="true"
attribute is present.
Reviewers: t.p.northover, efriedma, jyknight, chandlerc, rnk, srhines, void, george.burgess.iv
Reviewed By: efriedma, george.burgess.iv
Subscribers: eraman, haicheng, george.burgess.iv, drinkcat, theraven, reames, sanjoy, xbolva00, llvm-commits
Differential Revision: https://reviews.llvm.org/D47895
llvm-svn: 336613
Currently SmallSet<PointerTy> inherits from SmallPtrSet<PointerTy>. This
patch replaces such types with SmallPtrSet, because IMO it is slightly
clearer and allows us to get rid of unnecessarily including SmallSet.h
Reviewers: dblaikie, craig.topper
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D47836
llvm-svn: 334492
Review feedback from r328165. Split out just the one function from the
file that's used by Analysis. (As chandlerc pointed out, the original
change only moved the header and not the implementation anyway - which
was fine for the one function that was used (since it's a
template/inlined in the header) but not in general)
llvm-svn: 333954
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
This patch adds support for fragment expressions
TryToShrinkGlobalToBoolean() which were previously just dropped.
Thanks to Reid Kleckner for providing me a reproducer!
llvm-svn: 331086
Remove #include of Transforms/Scalar.h from Transform/Utils to fix layering.
Transforms depends on Transforms/Utils, not the other way around. So
remove the header and the "createStripGCRelocatesPass" function
declaration (& definition) that is unused and motivated this dependency.
Move Transforms/Utils/Local.h into Analysis because it's used by
Analysis/MemoryBuiltins.cpp.
llvm-svn: 328165
When the function has musttail call - its cc is fixed to be equal to the
cc of the musttail callee. In such case (and in the case of the musttail
callee), GlobalOpt should not change the cc to fastcc as it will break
the invariant.
This fixes PR36546
Patch by: Fedor Indutny (indutny)
Differential revision: https://reviews.llvm.org/D43859
llvm-svn: 326376
- Fix for bug 36078.
- Prevent the functionattrs, function-attrs, globalopt and argpromotion passes
from changing naked functions.
- These passes can perform some alterations to the functions that should not be
applied. An example is removing parameters that are seemingly not used because
they are only referenced in the inline assembly. Another example is marking
the function as fastcc.
llvm-svn: 325788
Summary:
When creating the debug fragments for a SRA'd variable, use the types'
allocation sizes. This fixes issues where the pass would emit too small
fragments, placed at the wrong offset, for padded types.
An example of this is long double on x86. The type is represented using
x86_fp80, which is 10 bytes, but the value is aligned to 12/16 bytes.
The padding is included in the type's DW_AT_byte_size attribute;
therefore, the fragments should also include that. Newer GCC releases
(I tested 7.2.0) emit 12/16-byte pieces for long double. Earlier
releases, e.g. GCC 5.5.0, behaved as LLVM did, i.e. by emitting a
10-byte piece, followed by an empty 2/6-byte piece for the padding.
Failing to cover all `DW_AT_byte_size' bytes of a value with non-empty
pieces results in the value being printed as <optimized out> by GDB.
Patch by: David Stenberg
Reviewers: aprantl, JDevlieghere
Reviewed By: aprantl, JDevlieghere
Subscribers: llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D42807
llvm-svn: 324066
For very, very large global initializers which can be statically evaluated, the
code would create vectors of temporary Constants, modifying them in place,
before committing the resulting Constant aggregate to the global's initializer
value. This had effectively O(n^2) complexity in the size of the global
initializer and would cause memory and non-termination issues compiling some
workloads.
This change performs the static initializer evaluation and creation in batches,
once for each global in the evaluated IR memory. The existing code is maintained
as a last resort when the initializers are more complex than simple values in a
large aggregate. This should theoretically by NFC, no test as the example case
is massive. The existing test cases pass with this, as well as the llvm test
suite.
To give an example, consider the following C++ code adapted from the clang
regression tests:
struct S {
int n = 10;
int m = 2 * n;
S(int a) : n(a) {}
};
template<typename T>
struct U {
T *r = &q;
T q = 42;
U *p = this;
};
U<S> e;
The global static constructor for 'e' will need to initialize 'r' and 'p' of
the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
members. This batch algorithm will simply use general CommitValueTo() method
to handle the complex nested S struct initialization of 'q', before
processing the outermost members in a single batch. Using CommitValueTo() to
handle member in the outer struct is inefficient when the struct/array is
very large as we end up creating and destroy constant arrays for each
initialization.
For the above case, we expect the following IR to be generated:
%struct.U = type { %struct.S*, %struct.S, %struct.U* }
%struct.S = type { i32, i32 }
@e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
i64 0, i32 1),
%struct.S { i32 42, i32 84 }, %struct.U* @e }
The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
constant expression, while the other two elements of @e are "simple".
Differential Revision: https://reviews.llvm.org/D42612
llvm-svn: 323933
candidates with coldcc attribute.
This recommits r322721 reverted due to sanitizer memory leak build bot failures.
Original commit message:
This patch adds support for the coldcc calling convention for Power.
This changes the set of non-volatile registers. It includes a pass to stress
test the implementation by marking all static directly called functions with
the coldcc attribute through the option -enable-coldcc-stress-test. It also
includes an option, -ppc-enable-coldcc, to add the coldcc attribute to
functions which are cold at all call sites based on BlockFrequencyInfo when
the containing function does not call any non cold functions.
Differential Revision: https://reviews.llvm.org/D38413
llvm-svn: 323778
Summary:
When creating the debug fragments for a SRA'd struct, use the fields'
offsets, taken from the struct layout, as the offsets for the resulting
fragments. This fixes an issue where GlobalOpt would emit fragments with
incorrect offsets for padded fields.
This should solve PR36016.
Patch by David Stenberg.
Reviewers: aprantl
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42489
llvm-svn: 323411
candidates with coldcc attribute.
This patch adds support for the coldcc calling convention for Power.
This changes the set of non-volatile registers. It includes a pass to stress
test the implementation by marking all static directly called functions with
the coldcc attribute through the option -enable-coldcc-stress-test. It also
includes an option, -ppc-enable-coldcc, to add the coldcc attribute to
functions which are cold at all call sites based on BlockFrequencyInfo when
the containing function does not call any non cold functions.
Differential Revision: https://reviews.llvm.org/D38413
llvm-svn: 322721
While updating clang tests for having clang set dso_local I noticed
that:
- There are *a lot* of tests to update.
- Many of the updates are redundant.
They are redundant because a GV is "obviously dso_local". This patch
starts formalizing that a bit by requiring that internal and private
GVs be dso_local too. Since they all are, we don't have to print
dso_local to the textual representation, making it a bit more compact
and easier to read.
llvm-svn: 322317
This patch contains fix for reverted commit
rL312318 which was causing failure due to use
of unchecked dyn_cast to CIInit.
Patch by: Nikola Prica.
llvm-svn: 313870
r312318 - Debug info for variables whose type is shrinked to bool
r312325, r312424, r312489 - Test case for r312318
Revision 312318 introduced a null dereference bug.
Details in https://bugs.llvm.org/show_bug.cgi?id=34490
llvm-svn: 312758
This patch provides such debug information for integer
variables whose type is shrinked to bool by providing
dwarf expression which returns either constant initial
value or other value.
Patch by Nikola Prica.
Differential Revision: https://reviews.llvm.org/D35994
llvm-svn: 312318
This is similar to what we are doing in "regular" SROA and creates
DW_OP_LLVM_fragment operations to describe the resulting variables.
rdar://problem/33654891
llvm-svn: 310014
[GlobalOpt] Remove unreachable blocks before optimizing a function.
While the change is presumably correct, it exposes a latent bug
in DI which breaks on of the CFI checks. I'll analyze it further
and try to understand what's going on.
llvm-svn: 307729
OpenCL 2.0 introduces the notion of memory scopes in atomic operations to
global and local memory. These scopes restrict how synchronization is
achieved, which can result in improved performance.
This change extends existing notion of synchronization scopes in LLVM to
support arbitrary scopes expressed as target-specific strings, in addition to
the already defined scopes (single thread, system).
The LLVM IR and MIR syntax for expressing synchronization scopes has changed
to use *syncscope("<scope>")*, where <scope> can be "singlethread" (this
replaces *singlethread* keyword), or a target-specific name. As before, if
the scope is not specified, it defaults to CrossThread/System scope.
Implementation details:
- Mapping from synchronization scope name/string to synchronization scope id
is stored in LLVM context;
- CrossThread/System and SingleThread scopes are pre-defined to efficiently
check for known scopes without comparing strings;
- Synchronization scope names are stored in SYNC_SCOPE_NAMES_BLOCK in
the bitcode.
Differential Revision: https://reviews.llvm.org/D21723
llvm-svn: 307722
LLVM's definition of dominance allows instructions that are cyclic
in unreachable blocks, e.g.:
%pat = select i1 %condition, @global, i16* %pat
because any instruction dominates an instruction in a block that's
not reachable from entry.
So, remove unreachable blocks from the function, because a) there's
no point in analyzing them and b) GlobalOpt should otherwise grow
some more complicated logic to break these cycles.
Differential Revision: https://reviews.llvm.org/D35028
llvm-svn: 307215
Just calling dropAllReferences leaves pointers to the ConstantExpr
behind, so we would eventually crash with a null pointer dereference.
Differential Revision: https://reviews.llvm.org/D32551
llvm-svn: 301575
Commits were:
"Use WeakVH instead of WeakTrackingVH in AliasSetTracker's UnkownInsts"
"Add a new WeakVH value handle; NFC"
"Rename WeakVH to WeakTrackingVH; NFC"
The changes assumed pointers are 8 byte aligned on all architectures.
llvm-svn: 301429
Summary:
I plan to use WeakVH to mean "nulls itself out on deletion, but does
not track RAUW" in a subsequent commit.
Reviewers: dblaikie, davide
Reviewed By: davide
Subscribers: arsenm, mehdi_amini, mcrosier, mzolotukhin, jfb, llvm-commits, nhaehnle
Differential Revision: https://reviews.llvm.org/D32266
llvm-svn: 301424
LLVM makes several assumptions about address space 0. However,
alloca is presently constrained to always return this address space.
There's no real way to avoid using alloca, so without this
there is no way to opt out of these assumptions.
The problematic assumptions include:
- That the pointer size used for the stack is the same size as
the code size pointer, which is also the maximum sized pointer.
- That 0 is an invalid, non-dereferencable pointer value.
These are problems for AMDGPU because alloca is used to
implement the private address space, which uses a 32-bit
index as the pointer value. Other pointers are 64-bit
and behave more like LLVM's notion of generic address
space. By changing the address space used for allocas,
we can change our generic pointer type to be LLVM's generic
pointer type which does have similar properties.
llvm-svn: 299888
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
Summary:
The LibFunc::Func enum holds enumerators named for libc functions.
Unfortunately, there are real situations, including libc implementations, where
function names are actually macros (musl uses "#define fopen64 fopen", for
example; any other transitively visible macro would have similar effects).
Strictly speaking, a conforming C++ Standard Library should provide any such
macros as functions instead (via <cstdio>). However, there are some "library"
functions which are not part of the standard, and thus not subject to this
rule (fopen64, for example). So, in order to be both portable and consistent,
the enum should not use the bare function names.
The old enum naming used a namespace LibFunc and an enum Func, with bare
enumerators. This patch changes LibFunc to be an enum with enumerators prefixed
with "LibFFunc_". (Unfortunately, a scoped enum is not sufficient to override
macros.)
There are additional changes required in clang.
Reviewers: rsmith
Subscribers: mehdi_amini, mzolotukhin, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D28476
llvm-svn: 292848
Now that PointerType is no longer a SequentialType, all SequentialTypes
have an associated number of elements, so we can move that information to
the base class, allowing for a number of simplifications.
Differential Revision: https://reviews.llvm.org/D27122
llvm-svn: 288464
Instead, expose whether the current type is an array or a struct, if an array
what the upper bound is, and if a struct the struct type itself. This is
in preparation for a later change which will make PointerType derive from
Type rather than SequentialType.
Differential Revision: https://reviews.llvm.org/D26594
llvm-svn: 288458
GlobalOpt is already dead-code-eliminating global definitions. With
this change it also takes care of declarations.
Hopefully this should make it now a strict superset of GlobalDCE.
This is important for LTO/ThinLTO as we don't want the linker to see
"undefined reference" when it processes the input files: it could
prevent proper internalization (or even load an extra file from a
static archive, changing the behavior of the program!).
llvm-svn: 281653
Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.
Thanks to David for the suggestion.
llvm-svn: 278078
A ConstantVector can have ConstantExpr operands and vice versa.
However, the folder had no ability to fold ConstantVectors which, in
some cases, was an optimization barrier.
Instead, rephrase the folder in terms of Constants instead of
ConstantExprs and teach callers how to deal with failure.
llvm-svn: 277099
Just because we can constant fold the result of an instruction does not
imply that we can delete the instruction. It may have side effects.
This fixes PR28655.
llvm-svn: 276389
If a local_unnamed_addr attribute is attached to a global, the address
is known to be insignificant within the module. It is distinct from the
existing unnamed_addr attribute in that it only describes a local property
of the module rather than a global property of the symbol.
This attribute is intended to be used by the code generator and LTO to allow
the linker to decide whether the global needs to be in the symbol table. It is
possible to exclude a global from the symbol table if three things are true:
- This attribute is present on every instance of the global (which means that
the normal rule that the global must have a unique address can be broken without
being observable by the program by performing comparisons against the global's
address)
- The global has linkonce_odr linkage (which means that each linkage unit must have
its own copy of the global if it requires one, and the copy in each linkage unit
must be the same)
- It is a constant or a function (which means that the program cannot observe that
the unique-address rule has been broken by writing to the global)
Although this attribute could in principle be computed from the module
contents, LTO clients (i.e. linkers) will normally need to be able to compute
this property as part of symbol resolution, and it would be inefficient to
materialize every module just to compute it.
See:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.htmlhttp://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html
for earlier discussion.
Part of the fix for PR27553.
Differential Revision: http://reviews.llvm.org/D20348
llvm-svn: 272709
We neglected to transfer operand bundles for some transforms. These
were found via inspection, I'll try to come up with some test cases.
llvm-svn: 268011