This revision replaces current type cast constant folder with a new common type cast constant folder function template.
It will cover all former folder and support fold the constant splat and vector.
Differential Revision: https://reviews.llvm.org/D123489
I am not sure about the meaning of Type in the name (was it meant be interpreted as Kind?), and given the importance and meaning of Type in the context of MLIR, its probably better to rename it. Given the comment in the source code, the suggestion in the GitHub issue and the final discussions in the review, this patch renames the OperandType to UnresolvedOperand.
Fixes https://github.com/llvm/llvm-project/issues/54446
Differential Revision: https://reviews.llvm.org/D122142
OpBase.td has formed into a huge monolith of all ODS constructs. This
commits starts to rectify that by splitting out some constructs to their
own .td files.
Differential Revision: https://reviews.llvm.org/D118636
BuiltinOps.h
These includes are going to be removed from BuiltinOps.h in a followup
when FuncOp is moved out of the Builtin dialect. This commit
pre-emptively adds those includes to simplify the patch moving FuncOp.
Given a cmpf of either uitofp or sitofp and a constant, attempt to canonicalize it to a cmpi.
This PR rewrites equivalent code within LLVM to now apply to MLIR arith.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D117257
insert is soft deprecated, so remove all references so it's less likely
to be used and can be easily removed in the future.
Differential Revision: https://reviews.llvm.org/D120021
Following the discussion in D118318, mark `arith.addf/mulf` commutative.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D118600
OwningRewritePatternList has been deprecated for ~10 months now, we can remove
the leftover using directives at this point.
Differential Revision: https://reviews.llvm.org/D118287
Given a while loop whose condition is given by a cmp, don't recomputed the comparison (or its inverse) in the after region, instead use a constant since the original condition must be true if we branched to the after region.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D117047
This patch adds two folds. One for a repeated xor (e.g. xor(xor(x, a), a)) and one for a repeated trunc (e.g. trunc(trunc(x))).
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D116383
Replace and(ext(a),ext(b)) with ext(and(a,b)). This both reduces one instruction, and results in the computation (and/or) being done on a smaller type.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D116519
This patch creates folds for cmpi( ext(%x : i1, iN) != 0) -> %x
In essence this matches patterns matching an extension of a boolean, that != 0, which is equivalent to the original condition.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D116504
Per the discussion in https://reviews.llvm.org/D116345 it makes sense
to move AtomicRMWOp out of the standard dialect. This was accentuated by the
need to add a fold op with a memref::cast. The only dialect
that would permit this is the memref dialect (keeping it in the standard dialect
or moving it to the arithmetic dialect would require those dialects to have a
dependency on the memref dialect, which breaks linking).
As the AtomicRMWKind enum is used throughout, this has been moved to Arith.
Reviewed By: Mogball
Differential Revision: https://reviews.llvm.org/D116392
With VectorType supporting scalable dimensions, we don't need many of
the operations currently present in ArmSVE, like mask generation and
basic arithmetic instructions. Therefore, this patch also gets
rid of those.
Having built-in scalable vector support also simplifies the lowering of
scalable vector dialects down to LLVMIR.
Scalable dimensions are indicated with the scalable dimensions
between square brackets:
vector<[4]xf32>
Is a scalable vector of 4 single precission floating point elements.
More generally, a VectorType can have a set of fixed-length dimensions
followed by a set of scalable dimensions:
vector<2x[4x4]xf32>
Is a vector with 2 scalable 4x4 vectors of single precission floating
point elements.
The scale of the scalable dimensions can be obtained with the Vector
operation:
%vs = vector.vscale
This change is being discussed in the discourse RFC:
https://llvm.discourse.group/t/rfc-add-built-in-support-for-scalable-vector-types/4484
Differential Revision: https://reviews.llvm.org/D111819
The specific description is [[ https://llvm.discourse.group/t/adding-unsigned-integer-ceil-and-floor-in-std-dialect/4541 | Adding unsigned integer ceil in Std Dialect ]] .
When we lower ceilDivOp this will generate below code, sometimes we know m and n are unsigned intergal.Here are some redundant judgments about positive and negative.
So we need to add some unsigned operations to simplify the instructions.
```
ceilDiv(n, m)
x = (m > 0) ? -1 : 1
return (n*m>0) ? ((n+x) / m) + 1 : - (-n / m)
```
unsigned operations:
```
ceilDivU(n, m)
return n ==0 ? 0 : ((n - 1) / m) + 1
```
Reviewed By: Mogball
Differential Revision: https://reviews.llvm.org/D113363
Precursor: https://reviews.llvm.org/D110200
Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.
Renamed all instances of operations in the codebase and in tests.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D110797
Create the Arithmetic dialect that contains basic integer and floating
point arithmetic operations. Ops that did not meet this criterion were
moved to the Math dialect.
First of two atomic patches to remove integer and floating point
operations from the standard dialect. Ops will be removed from the
standard dialect in a subsequent patch.
Reviewed By: ftynse, silvas
Differential Revision: https://reviews.llvm.org/D110200