Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
The partitioning logic attempted to handle uses of an alloca with an
offset starting before the alloca so long as the use had some overlap
with the alloca itself. However, there was a bug where we tested
'(uint64_t)Offset >= AllocSize' without first checking whether 'Offset'
was positive. As a consequence, essentially every negative offset (that
is, starting *before* the alloca does) would be thrown out, even if it
was overlapping. The subsequent code to throw out negative offsets which
were actually non-overlapping was essentially dead. The code to *handle*
overlapping negative offsets was actually dead!
I've just removed all of this, and taught SROA to discard any uses which
start prior to the alloca from the beginning. It has the lovely property
of simplifying the code. =] All the tests still pass, and in fact no new
tests are needed as this is already covered by our testsuite. Fixing the
code so that negative offsets work the way the comments indicate they
were supposed to work causes regressions. That's how I found this.
Anyways, this is all progress in the correct direction -- tightening up
SROA to be maximally aggressive. Some day, I really hope to turn
out-of-bounds accesses to an alloca into 'unreachable'.
llvm-svn: 169120
The original patch removed a bunch of code that the SjLjEHPrepare pass placed
into the entry block if all of the landing pads were removed during the
CodeGenPrepare class. The more natural way of doing things is to run the CGP
*before* we run the SjLjEHPrepare pass.
Make it so!
llvm-svn: 169044
The simplify-libcalls pass maintained a statistic to count the number
of library calls that have been simplified. Now that library call
simplification is being carried out in instcombine the statistic should
be moved to there.
llvm-svn: 168975
depends on the IR infrastructure, there is no sense in it being off in
Support land.
This is in preparation to start working to expand InstVisitor into more
special-purpose visitors that are still generic and can be re-used
across different passes. The expansion will go into the Analylis tree
though as nothing in VMCore needs it.
llvm-svn: 168972
This revision attempts to recognize following population-count pattern:
while(a) { c++; ... ; a &= a - 1; ... },
where <c> and <a>could be used multiple times in the loop body.
TODO: On X8664 and ARM, __buildin_ctpop() are not expanded to a efficent
instruction sequence, which need to be improved in the following commits.
Reviewed by Nadav, really appreciate!
llvm-svn: 168931
the last invoke instruction in the function. This also removes the last landing
pad in an function. This is fine, but with SjLj EH code, we've already placed a
bunch of code in the 'entry' block, which expects the landing pad to stick
around.
When we get to the situation where CGP has removed the last landing pad, go
ahead and nuke the SjLj instructions from the 'entry' block.
<rdar://problem/12721258>
llvm-svn: 168930
This patch migrates the puts optimizations from the simplify-libcalls
pass into the instcombine library call simplifier.
All the simplifiers from simplify-libcalls have now been migrated to
instcombine. Yay! Just a few other bits to migrate (prototype attribute
inference and a few statistics) and simplify-libcalls can finally be put
to rest.
llvm-svn: 168925
Now if we can transform an alloca into a single vector value, but it has
subvector, non-element accesses, we form the appropriate shufflevectors
to allow SROA to proceed. This fixes PR14055 which pointed out a very
common pattern that SROA couldn't handle -- mixed vec3 and vec4
operations on a single alloca.
llvm-svn: 168418
The issue is that we may end up with newly OOB loads when speculating
a load into the predecessors of a PHI node, and this confuses the new
integer splitting logic in some cases, triggering an assertion failure.
In fact, the branch in question must be dead code as it loads from
a too-narrow alloca. Add code to handle this gracefully and leave the
requisite FIXMEs for both optimizing more aggressively and doing more to
aid sanitizing invalid code which triggers these patterns.
llvm-svn: 168361
to properly handle the combinations of these with split integer loads
and stores. This essentially replaces Evan's r168227 by refactoring the
code in a different way, and trynig to mirror that refactoring in both
the load and store sides of the rewriting.
Generally speaking there was some really problematic duplicated code
here that led to poorly founded assumptions and then subtle bugs. Now
much of the code actually flows through and follows a more consistent
style and logical path. There is still a tiny bit of duplication on the
store side of things, but it is much less bad.
This also changes the logic to never re-use a load or store instruction
as that was simply too error prone in practice.
I've added a few tests (one a reduction of the one in Evan's original
patch, which happened to be the same as the report in PR14349). I'm
going to look at adding a few more tests for things I found and fixed in
passing (such as the volatile tests in the vectorizable predicate).
This patch has survived bootstrap, and modulo one bugfix survived
Duncan's test suite, but let me know if anything else explodes.
llvm-svn: 168346
operands of the expression being written was wrongly thought to be reusable as
an inner node of the expression resulting in it turning up as both an inner node
*and* a leaf, creating a cycle in the def-use graph. This would have caused the
verifier to blow up if things had gotten that far, however it managed to provoke
an infinite loop first.
llvm-svn: 168291
the utility for extracting a chain of operations from the IR, thought that it
might as well combine any constants it came across (rather than just returning
them along with everything else). On the other hand, the factorization code
would like to see the individual constants (this is quite reasonable: it is
much easier to pull a factor of 3 out of 2*3 than it is to pull it out of 6;
you may think 6/3 isn't so hard, but due to overflow it's not as easy to undo
multiplications of constants as it may at first appear). This patch therefore
makes LinearizeExprTree stupider: it now leaves optimizing to the optimization
part of reassociate, and sticks to just analysing the IR.
llvm-svn: 168035
This patch migrates the math library call simplifications from the
simplify-libcalls pass into the instcombine library call simplifier.
I have typically migrated just one simplifier at a time, but the math
simplifiers are interdependent because:
1. CosOpt, PowOpt, and Exp2Opt all depend on UnaryDoubleFPOpt.
2. CosOpt, PowOpt, Exp2Opt, and UnaryDoubleFPOpt all depend on
the option -enable-double-float-shrink.
These two factors made migrating each of these simplifiers individually
more of a pain than it would be worth. So, I migrated them all together.
llvm-svn: 167815
The assertion is trigged when the Reassociater tries to transform expression
... + 2 * n * 3 + 2 * m + ...
into:
... + 2 * (n*3 + m).
In the process of the transformation, a helper routine folds the constant 2*3 into 6,
confusing optimizer which is trying the to eliminate the common factor 2, and cannot
find 2 any more.
Review is pending. But I'd like commit first in order to help those who are waiting
for this fix.
llvm-svn: 167740
The new analysis is not yet ready for prime time. It has a *critical*
flawed assumption, and some troubling shortages of testing. Until it's
been hammered into better shape, let's stick with the working code. This
should be easy to revert itself when the analysis is ready.
Fixes PR14241, a miscompile of any memcpy-able loop which uses a pointer
as the induction mechanism. If you have been seeing miscompiles in this
revision range, you really want to test with this backed out. The
results of this miscompile are a bit subtle as they can lead to
downstream passes concluding things are impossible which are in fact
possible.
Thanks to David Blaikie for the majority of the reduction of this
miscompile. I'll be checking in the test case in a non-revert commit.
Revesions reverted here:
r167045: LoopIdiom: Fix a serious missed optimization: we only turned
top-level loops into memmove.
r166877: LoopIdiom: Add checks to avoid turning memmove into an infinite
loop.
r166875: LoopIdiom: Recognize memmove loops.
r166874: LoopIdiom: Replace custom dependence analysis with
DependenceAnalysis.
llvm-svn: 167286
r165941: Resubmit the changes to llvm core to update the functions to
support different pointer sizes on a per address space basis.
Despite this commit log, this change primarily changed stuff outside of
VMCore, and those changes do not carry any tests for correctness (or
even plausibility), and we have consistently found questionable or flat
out incorrect cases in these changes. Most of them are probably correct,
but we need to devise a system that makes it more clear when we have
handled the address space concerns correctly, and ideally each pass that
gets updated would receive an accompanying test case that exercises that
pass specificaly w.r.t. alternate address spaces.
However, from this commit, I have retained the new C API entry points.
Those were an orthogonal change that probably should have been split
apart, but they seem entirely good.
In several places the changes were very obvious cleanups with no actual
multiple address space code added; these I have not reverted when
I spotted them.
In a few other places there were merge conflicts due to a cleaner
solution being implemented later, often not using address spaces at all.
In those cases, I've preserved the new code which isn't address space
dependent.
This is part of my ongoing effort to clean out the partial address space
code which carries high risk and low test coverage, and not likely to be
finished before the 3.2 release looms closer. Duncan and I would both
like to see the above issues addressed before we return to these
changes.
llvm-svn: 167222
getIntPtrType support for multiple address spaces via a pointer type,
and also introduced a crasher bug in the constant folder reported in
PR14233.
These commits also contained several problems that should really be
addressed before they are re-committed. I have avoided reverting various
cleanups to the DataLayout APIs that are reasonable to have moving
forward in order to reduce the amount of churn, and minimize the number
of commits that were reverted. I've also manually updated merge
conflicts and manually arranged for the getIntPtrType function to stay
in DataLayout and to be defined in a plausible way after this revert.
Thanks to Duncan for working through this exact strategy with me, and
Nick Lewycky for tracking down the really annoying crasher this
triggered. (Test case to follow in its own commit.)
After discussing with Duncan extensively, and based on a note from
Micah, I'm going to continue to back out some more of the more
problematic patches in this series in order to ensure we go into the
LLVM 3.2 branch with a reasonable story here. I'll send a note to
llvmdev explaining what's going on and why.
Summary of reverted revisions:
r166634: Fix a compiler warning with an unused variable.
r166607: Add some cleanup to the DataLayout changes requested by
Chandler.
r166596: Revert "Back out r166591, not sure why this made it through
since I cancelled the command. Bleh, sorry about this!
r166591: Delete a directory that wasn't supposed to be checked in yet.
r166578: Add in support for getIntPtrType to get the pointer type based
on the address space.
llvm-svn: 167221