Rationale:
Pretty simply, the idea is that sometimes type names are way too long and contain way too many details for the average developer to care about. For instance, a plain ol' vector of int might be shown as
std::__1::vector<int, std::__1::allocator<....
rather than the much simpler std::vector<int> form, which is what most developers would actually type in their code
Proposed solution:
Introduce a notion of "display name" and a corresponding API GetDisplayTypeName() to return such a crafted for visual representation type name
Obviously, the display name and the fully qualified (or "true") name are not necessarily the same - that's the whole point
LLDB could choose to pick the "display name" as its one true notion of a type name, and if somebody really needs the fully qualified version of it, let them deal with the problem
Or, LLDB could rename what it currently calls the "type name" to be the "display name", and add new APIs for the fully qualified name, making the display name the default choice
The choice that I am making here is that the type name will keep meaning the same, and people who want a type name suited for display will explicitly ask for one
It is the less risky/disruptive choice - and it should eventually make it fairly obvious when someone is asking for the wrong type
Caveats:
- for now, GetDisplayTypeName() == GetTypeName(), there is no logic to produce customized display type names yet.
- while the fully-qualified type name is still the main key to the kingdom of data formatters, if we start showing custom names to people, those should match formatters
llvm-svn: 209072
This decision has always been statically-bound to the individual formatter. With this patch, the idea is that this decision could potentially be dynamic depending on the ValueObject itself
llvm-svn: 207046
Revert the spirit of r199857 - a convincing case can be made that overriding a summary's format markers behind its back is not the right thing to do
This commit reverts the behavior of the code to the previous model, and changes the test case to validate the opposite of what it was validating before
llvm-svn: 201455
ValueObjectPrinter could enter an infinite loop while trying to display an aptly formed ValueObject: a reference, with a child of some pointer type, such that the pointees chain ended up pointing back to some part of itself - a pointer to itself being the simplest such case
Fixed here by only setting a pointer depth when needed, and ensuring that we won't overflow and wrap the pointer depth when it's zero.
llvm-svn: 200247
This radar extends the notion of one-liner summaries to automagically apply in a few interesting cases
More specifically, this checkin changes the printout of ValueObjects to print on one-line (as if type summary add -c had been applied) iff:
this ValueObject does not have a summary
its children have no synthetic children
its children are not a non-empty base class without a summary
its children do not have a summary that asks for children to show up
the aggregate length of all the names of all the children is <= 50 characters
you did not ask to see the types during a printout
your pointer depth is 0
This is meant to simplify the way LLDB shows data on screen for small structs and similarly compact data types (e.g. std::pair<int,int> anyone?)
Feedback is especially welcome on how the feature feels and corner cases where we should apply this printout and don't (or viceversa, we are applying it when we shouldn't be)
llvm-svn: 191996
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694