`MachineMemOperand` pointers attached to `MachineSDNodes` and instead
have the `SelectionDAG` fully manage the memory for this array.
Prior to this change, the memory management was deeply confusing here --
The way the MI was built relied on the `SelectionDAG` allocating memory
for these arrays of pointers using the `MachineFunction`'s allocator so
that the raw pointer to the array could be blindly copied into an
eventual `MachineInstr`. This creates a hard coupling between how
`MachineInstr`s allocate their array of `MachineMemOperand` pointers and
how the `MachineSDNode` does.
This change is motivated in large part by a change I am making to how
`MachineFunction` allocates these pointers, but it seems like a layering
improvement as well.
This would run the risk of increasing allocations overall, but I've
implemented an optimization that should avoid that by storing a single
`MachineMemOperand` pointer directly instead of allocating anything.
This is expected to be a net win because the vast majority of uses of
these only need a single pointer.
As a side-effect, this makes the API for updating a `MachineSDNode` and
a `MachineInstr` reasonably different which seems nice to avoid
unexpected coupling of these two layers. We can map between them, but we
shouldn't be *surprised* at where that occurs. =]
Differential Revision: https://reviews.llvm.org/D50680
llvm-svn: 339740
This reverts commit d8f57105010cc7e78026e511d5def873fc91e0e7.
Original Commit:
Author: Haicheng Wu <haicheng@codeaurora.org>
Date: Sun Feb 18 13:51:33 2018 +0000
[AArch64] Coalesce Copy Zero during instruction selection
Add special case for copy of zero to avoid a double copy.
Differential Revision: https://reviews.llvm.org/D36104
Author's intention is to remove a BB that has one mov instruction. In
order to do that, d8f571050 pessmizes MachineSinking by introducing a
copy, such that mov instruction is NOT moved to the BB. Optimization
downstream gets rid of the BB with only mov instruction. This works well
if we have only one fall through branch as there is only one "extra"
mov instruction.
If we have multiple fall throughs, we will have a lot of redundant movs.
In such a case, it's better to have this BB which has one mov instruction.
This is causing degradation in jpeg, fft and other codebases. I believe
if we want to remove a BB with only one branch instruction, we should not
pessimize Machine Sinking at all, and find some other solution.
llvm-svn: 335251
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
This reland includes a check to prevent the DAG combiner from folding an
offset that is smaller than the existing one. This can cause oscillations
between two possible DAGs, which was the cause of the hang and later assertion
failure observed on the lnt-ctmark-aarch64-O3-flto bot.
http://green.lab.llvm.org/green/job/lnt-ctmark-aarch64-O3-flto/2024/
Original commit message:
> This is a code size win in code that takes offseted addresses
> frequently, such as C++ constructors that typically need to compute
> an offseted address of a vtable. This reduces the size of Chromium
> for Android's .text section by 108KB.
Differential Revision: https://reviews.llvm.org/D45199
llvm-svn: 330630
This is a code size win in code that takes offseted addresses
frequently, such as C++ constructors that typically need to compute
an offseted address of a vtable. This reduces the size of Chromium
for Android's .text section by 108KB.
Differential Revision: https://reviews.llvm.org/D45199
llvm-svn: 329956
This is a code size win in code that takes offseted addresses
frequently, such as C++ constructors that typically need to compute
an offseted address of a vtable. It reduces the size of Chromium for
Android's .text section by 46KB, or 56KB with ThinLTO (which exposes
more opportunities to use a direct access rather than a GOT access).
Because the addend range is limited in COFF and Mach-O, this is
enabled for ELF only.
Differential Revision: https://reviews.llvm.org/D45199
llvm-svn: 329611
Summary:
Fixes an UB caught by sanitizer. The shift amount might be larger than 32 so the operand should be 1ULL.
In this patch, we replace the original expression with existing API with uint64_t type.
Reviewers: eli.friedman, rengolin
Reviewed By: rengolin
Subscribers: rengolin, javed.absar, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D44234
llvm-svn: 326969
Previously some targets printed their own message at the start of Select to indicate what they were selecting. For the targets that didn't, it means there was no print of the root node before any custom handling in the target executed. So if the target did something custom and never called SelectNodeCommon, no print would be made. For the targets that did print a message in Select, if they didn't custom handle a node SelectNodeCommon would reprint the root node before walking the isel table.
It seems better to just print the message before the call to Select so all targets behave the same. And then remove the root node printing from SelectNodeCommon and just leave a message that says we're starting the table search.
There were also some oddities in blank line behavior. Usually due to a \n after a call to SelectionDAGNode::dump which already inserted a new line.
llvm-svn: 323551
Some nodes produce multiple values so when obtaining the type of an ISD::OR we
need to make sure we ask for the correct one. Hopefully that's all of them.
llvm-svn: 323205
Restricting register class to PointerRegClass for memory operands.
Also fix the PointerRegClass for AArch64 from GPR64 to GPR64sp, since
XZR cannot hold a memory pointer while SP is.
Fixes PR33134.
Differential Revision: https://reviews.llvm.org/D34999
llvm-svn: 308060
Implemented support to AArch64 codegen for ARMv8.1 Large System
Extensions atomic instructions. Where supported, these instructions can
provide atomic operations with higher performance.
Currently supported operations include: fetch_add, fetch_or, fetch_xor,
fetch_smin, fetch_min/max (signed and unsigned), swap, and
compare_exchange.
This implementation implies sequential-consistency ordering, more
relaxed ordering is under development.
Subtarget->hasLSE is currently supported for Cavium ThunderX2T99.
Patch by Ananth Jasty.
Differential Revision: https://reviews.llvm.org/D33586
Change-Id: I82f6d3d64255622791ceb0715b7ab9f4dc4d4b2c
llvm-svn: 305893
This patch replaces the separate APInts for KnownZero/KnownOne with a single KnownBits struct. This is similar to what was done to ValueTracking's version recently.
This is largely a mechanical transformation from KnownZero to Known.Zero.
Differential Revision: https://reviews.llvm.org/D32569
llvm-svn: 301620
This reverts commit r301105, 4, 3 and 1, as a follow up of the previous
revert, which broke even more bots.
For reference:
Revert "[APInt] Use operator<<= where possible. NFC"
Revert "[APInt] Use operator<<= instead of shl where possible. NFC"
Revert "[APInt] Use ashInPlace where possible."
PR32754.
llvm-svn: 301111
This patch uses lshrInPlace to replace code where the object that lshr is called on is being overwritten with the result.
This adds an lshrInPlace(const APInt &) version as well.
Differential Revision: https://reviews.llvm.org/D32155
llvm-svn: 300566
Summary:
This feature enables folding of logical shift operations of up to 3 places into addressing mode on Kryo and Falkor that have a fastpath LSL.
Reviewers: mcrosier, rengolin, t.p.northover
Subscribers: junbuml, gberry, llvm-commits, aemerson
Differential Revision: https://reviews.llvm.org/D31113
llvm-svn: 299240
Summary:
When computing useful bits for a BFM instruction, we need
to take into consideration the case where both operands
of the BFM are equal and provide data that we need to track.
Not doing this can cause us to miss useful bits.
Fixes PR31138 (https://llvm.org/bugs/show_bug.cgi?id=31138)
Reviewers: t.p.northover, jmolloy
Subscribers: evandro, gberry, srhines, pirama, mcrosier, aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D27130
llvm-svn: 288253
Summary:
Some vector loads and stores generated from AArch64 intrinsics alias each other
unnecessarily, preventing better scheduling. We just need to transfer memory
operands during lowering.
Reviewers: mcrosier, t.p.northover, jmolloy
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D26313
llvm-svn: 286168
Don't match the UXTW extended reg forms of ADD/ADDS/SUB/SUBS if the
32-bit to 64-bit zero-extend can be done for free by taking advantage
of the 32-bit defining instruction zeroing the upper 32-bits of the X
register destination. This enables better instruction selection in a
few cases, such as:
sub x0, xzr, x8
instead of:
mov x8, xzr
sub x0, x8, w9, uxtw
madd x0, x1, x1, x8
instead of:
mul x9, x1, x1
add x0, x9, w8, uxtw
cmp x2, x8
instead of:
sub x8, x2, w8, uxtw
cmp x8, #0
add x0, x8, x1, lsl #3
instead of:
lsl x9, x1, #3
add x0, x9, w8, uxtw
Reviewers: t.p.northover, jmolloy
Subscribers: mcrosier, aemerson, llvm-commits, rengolin
Differential Revision: https://reviews.llvm.org/D24747
llvm-svn: 282413
The way the named arguments for various system instructions are handled at the
moment has a few problems:
- Large-scale duplication between AArch64BaseInfo.h and AArch64BaseInfo.cpp
- That weird Mapping class that I have no idea what I was on when I thought
it was a good idea.
- Searches are performed linearly through the entire list.
- We print absolutely all registers in upper-case, even though some are
canonically mixed case (SPSel for example).
- The ARM ARM specifies sysregs in terms of 5 fields, but those are relegated
to comments in our implementation, with a slightly opaque hex value
indicating the canonical encoding LLVM will use.
This adds a new TableGen backend to produce efficiently searchable tables, and
switches AArch64 over to using that infrastructure.
llvm-svn: 274576
The other use really does only care about the SDNode (it checks the
opcode against a whitelist), but bitFieldPlacement can be misled if
the node produces multiple results.
Patch by Ismail Badawi.
llvm-svn: 274567
We were assuming all SBFX-like operations would have the shl/asr form, but often
when the field being extracted is an i8 or i16, we end up with a
SIGN_EXTEND_INREG acting on a shift instead.
This is a port of r213754 from ARM to AArch64.
llvm-svn: 271677
If and only if the value being inserted sets only known zero bits.
This combine transforms things like
and w8, w0, #0xfffffff0
movz w9, #5
orr w0, w8, w9
into
movz w8, #5
bfxil w0, w8, #0, #4
The combine is tuned to make sure we always reduce the number of instructions.
We avoid churning code for what is expected to be performance neutral changes
(e.g., converted AND+OR to OR+BFI).
Differential Revision: http://reviews.llvm.org/D20387
llvm-svn: 270846
Mask0Imm and ~Mask1Imm must be equivalent and one of the MaskImms is a shifted
mask (e.g., 0x000ffff0). Both 'and's must have a single use.
This changes code like:
and w8, w0, #0xffff000f
and w9, w1, #0x0000fff0
orr w0, w9, w8
into
lsr w8, w1, #4
bfi w0, w8, #4, #12
llvm-svn: 270063
This one has a lot of code churn, but it's all mechanical and
straightforward.
- Where we were returning a node before, call ReplaceNode instead.
- Where we would return null to fall back to another selector, rename
the method to try* and return a bool for success.
- Where we were calling SelectNodeTo, just return afterwards.
Part of llvm.org/pr26808.
llvm-svn: 269379