to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
The class definition for Call_nr has the itinerary as a
parameter, but the value is never assigned to the Itinerary
field for the instruction. This means the compiler is unable
to schedule and packetize the instruction correctly because
these instrution will not have any resource descritions.
I don't have a specific test case, but the ps_call_nr.ll
test failed with a proposed patch.
llvm-svn: 345442
These instructions have been around for a long time, but we
haven't supported intrinsics for them. The "new" versions use
the CSx register for the start of the buffer instead of the K
field in the Mx register.
We need to use pseudo instructions for these instructions until
after register allocation. The problem is that these instructions
allocate a M0/CS0 or M1/CS1 pair. But, we can't generate code for
the CSx set-up until after register allocation when the Mx
register has been fixed for the instruction.
There is a related clang patch.
Patch by Brendon Cahoon.
llvm-svn: 328724
This patch lets the llvm tools handle the new HVX target features that
are added by frontend (clang). The target-features are of the form
"hvx-length64b" for 64 Byte HVX mode, "hvx-length128b" for 128 Byte mode HVX.
"hvx-double" is an alias to "hvx-length128b" and is soon will be deprecated.
The hvx version target feature is upgated form "+hvx" to "+hvxv{version_number}.
Eg: "+hvxv62"
For the correct HVX code generation, the user must use the following
target features.
For 64B mode: "+hvxv62" "+hvx-length64b"
For 128B mode: "+hvxv62" "+hvx-length128b"
Clang picks a default length if none is specified. If for some reason,
no hvx-length is specified to llvm, the compilation will bail out.
There is a corresponding clang patch.
Differential Revision: https://reviews.llvm.org/D38851
llvm-svn: 316101
This removes the duplicate HVX instruction set for the 128-byte mode.
Single instruction set now works for both modes (64- and 128-byte).
llvm-svn: 313362
Using arguments with attribute inalloca creates problems for verification
of machine representation. This attribute instructs the backend that the
argument is prepared in stack prior to CALLSEQ_START..CALLSEQ_END
sequence (see http://llvm.org/docs/InAlloca.htm for details). Frame size
stored in CALLSEQ_START in this case does not count the size of this
argument. However CALLSEQ_END still keeps total frame size, as caller can
be responsible for cleanup of entire frame. So CALLSEQ_START and
CALLSEQ_END keep different frame size and the difference is treated by
MachineVerifier as stack error. Currently there is no way to distinguish
this case from actual errors.
This patch adds additional argument to CALLSEQ_START and its
target-specific counterparts to keep size of stack that is set up prior to
the call frame sequence. This argument allows MachineVerifier to calculate
actual frame size associated with frame setup instruction and correctly
process the case of inalloca arguments.
The changes made by the patch are:
- Frame setup instructions get the second mandatory argument. It
affects all targets that use frame pseudo instructions and touched many
files although the changes are uniform.
- Access to frame properties are implemented using special instructions
rather than calls getOperand(N).getImm(). For X86 and ARM such
replacement was made previously.
- Changes that reflect appearance of additional argument of frame setup
instruction. These involve proper instruction initialization and
methods that access instruction arguments.
- MachineVerifier retrieves frame size using method, which reports sum of
frame parts initialized inside frame instruction pair and outside it.
The patch implements approach proposed by Quentin Colombet in
https://bugs.llvm.org/show_bug.cgi?id=27481#c1.
It fixes 9 tests failed with machine verifier enabled and listed
in PR27481.
Differential Revision: https://reviews.llvm.org/D32394
llvm-svn: 302527