This diff implements -rpath option for llvm-install-name-tool
which replaces the rpath value in the specified Mach-O binary.
Patch by Sameer Arora!
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D82051
Summary:
The advice in HowToUpdateDebugInfo.rst is to "... preserve the debug
location of an instruction if the instruction either remains in its
basic block, or if its basic block is folded into a predecessor that
branches unconditionally".
TryToSinkInstruction doesn't seem to satisfy the criteria as it's
sinking an instruction to some successor block. Preserving the debug loc
can make single-stepping appear to go backwards, or make a breakpoint
hit on that location happen "too late" (since single-stepping from that
breakpoint can cause the function to return unexpectedly).
So, drop the debug location.
This was reverted in ee3620643d because it removed source locations
from inlinable calls, breaking a verifier rule. I've added an exception
for calls because the alternative (setting a line 0 location) is not
better. I tested the updated patch by completing a stage2 RelWithDebInfo
build.
Reviewers: aprantl, davide
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82487
Fixed-form line continuation was not working when the
preceding line was a bare label.
Reviewed By: tskeith
Differential Revision: https://reviews.llvm.org/D82687
CPUs with avx always have xsave, but some CPUs without avx also
have xsave. So we shouldn't disable xsave just because avx is
disabled. This would prevent xsave from being enabled with
-march=native on CPUs with xsave and not avx.
But we also don't want -mavx -mno-avx to leave xsave eanabled.
So only enable xsave if avx is enabled after processing all features.
I thought about just not turning xsave on with avx at all, but
there might be someone out there depending on it.
From https://reviews.llvm.org/D81236 /
55fe7b79bb
std::tie is used without including <tuple>. This patch includes <tuple>
so that some downstream Windows bots succesfully build.
The test fails on Darwin because a different Asynchronous UnwindPlan is
chosen:
Asynchronous (not restricted to call-sites) UnwindPlan is 'assembly
insn profiling'`
instead of what the test expects:
Asynchronous (not restricted to call-sites) UnwindPlan is 'eh_frame
CFI'
Every other value parameter attribute uses parentheses, so accept this
as the preferred modern syntax. Updating everything to use the new
syntax is left for a future change.
This avoids many instances of failing to legalize a vector truncstore
of <4 x s8> to 2 bytes. We don't perfectly handle every truncstore
yet, largely because the given set of legalization actions can't
actually differentiate between changing the result type and changing
the memory type.
Is teaching the LoopFullUnrollPass to preserve MemorySSA very hard or
just impossible?
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D82618
In https://reviews.llvm.org/D81198, we outlined a number of scenarios
where dropping debug locations is appropriate. Stop issuing an error
when this happens.
The translation of cmpxchg added by
9481399c0f specifically skipped weak
cmpxchg due to not understanding the meaning. Weak cmpxchg was added
in 420a216817. As explained in the
commit message, the weak mode is implicit in how
ATOMIC_CMP_SWAP_WITH_SUCCESS is lowered. If it's expanded to a regular
ATOMIC_CMP_SWAP, it's replaced with a strong cmpxchg.
This handling seems weird to me, but this was already following the
DAG behavior. I would expect the strong IR instruction to not have the
boolean output. Failing that, I might expect the IRTranslator to emit
ATOMIC_CMP_SWAP and a constant for the boolean.
We're now hitting this because we're at the limit for number of builtins:
clang/lib/Basic/IdentifierTable.cpp:39:1: error: static_assert failed due to requirement '2 * LargestBuiltinID < (2 << (ObjCOrBuiltinIDBits - 1))' "Insufficient ObjCOrBuiltinID Bits"
static_assert(2 * LargestBuiltinID < (2 << (ObjCOrBuiltinIDBits - 1)),
^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Bump it to 15 so whoever adds a builtin next (as I am, or as anyone else might) doesn't merge conflict over each other.
The original patch was reverted in
ff5ccf258e
as it was missing the C tests that got accidentally missing.
This patch is a NFC of https://reviews.llvm.org/D82501, together with
the SVE ACLE tests for the C intrinsics of svreinterpret for brain
float types.
Summary:
A while ago I implemented the functionality to lower Microsoft __ptr32
and __ptr64 pointers, which are stored as 32-bit and 64-bit pointer
and are extended/truncated to the appropriate pointer size when
dereferenced.
This patch adds an addrspacecast to cast from the __ptr32/__ptr64
pointer to a default address space when dereferencing.
Bug: https://bugs.llvm.org/show_bug.cgi?id=42359
Reviewers: hans, arsenm, RKSimon
Subscribers: wdng, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81517
Summary:
The advice in HowToUpdateDebugInfo.rst is to "... preserve the debug
location of an instruction if the instruction either remains in its
basic block, or if its basic block is folded into a predecessor that
branches unconditionally".
TryToSinkInstruction doesn't seem to satisfy the criteria as it's
sinking an instruction to some successor block. Preserving the debug loc
can make single-stepping appear to go backwards, or make a breakpoint
hit on that location happen "too late" (since single-stepping from that
breakpoint can cause the function to return unexpectedly).
So, drop the debug location.
Reviewers: aprantl, davide
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82487
This reverts commit a15722c5ce.
The commmit has to be reverted because I accidentally submit
https://reviews.llvm.org/D82501 without the C tests that were added in
an early version of the patch.
This patch adds VPValue version of the GEP's operands to
VPWidenGEPRecipe and uses them during code-generation.
Reviewers: Ayal, gilr, rengolin
Reviewed By: gilr
Differential Revision: https://reviews.llvm.org/D80220
A seemingly innocuous Linux kernel change [0] seemingly blew up our
compile times by over 3x, as reported by @nathanchance in [1].
The code in question uses a doubly nested macro containing GNU C
statement expressions that are then passed to typeof(), which is then
used in a very important macro for atomic variable access throughout
most of the kernel. The inner most macro, is passed a GNU C statement
expression. In this case, we have macro arguments that are GNU C
statement expressions, which can contain a significant number of tokens.
The upstream kernel patch caused significant build time regressions for
both Clang and GCC. Since then, some of the nesting has been removed via
@melver, which helps gain back most of the lost compilation time. [2]
Profiles collected [3] from compilations of the slowest TU for us in the
kernel show:
* 51.4% time spent in clang::TokenLexer::updateLocForMacroArgTokens
* 48.7% time spent in clang::SourceManager::getFileIDLocal
* 35.5% time spent in clang::SourceManager::isOffsetInFileID
(mostly calls from the former through to the latter).
So it seems we have a pathological case for which properly tracking the
SourceLocation of macro arguments is significantly harming build
performance. This stands out in referenced flame graph.
In fact, this case was identified previously as being problematic in
commit 3339c568c4 ("[Lex] Speed up updateConsecutiveMacroArgTokens (NFC)")
Looking at the above call chain, there's 3 things we can do to speed up
this case.
1. TokenLexer::updateConsecutiveMacroArgTokens() calls
SourceManager::isWrittenInSameFile() which calls
SourceManager::getFileID(), which is both very hot and very expensive
to call. SourceManger has a one entry cache, member LastFileIDLookup.
If that isn't the FileID for a give source location offset, we fall
back to a linear probe, and then to a binary search for the FileID.
These fallbacks update the one entry cache, but noticeably they do
not for the case of macro expansions!
For the slowest TU to compile in the Linux kernel, it seems that we
miss about 78.67% of the 68 million queries we make to getFileIDLocal
that we could have had cache hits for, had we saved the macro
expansion source location's FileID in the one entry cache. [4]
I tried adding a separate cache item for macro expansions, and to
check that before the linear then binary search fallbacks, but did
not find it faster than simply allowing macro expansions into the one
item cache. This alone nets us back a lot of the performance loss.
That said, this is a modification of caching logic, which is playing
with a double edged sword. While it significantly improves the
pathological case, its hard to say that there's not an equal but
opposite pathological case that isn't regressed by this change.
Though non-pathological cases of builds of the Linux kernel before
[0] are only slightly improved (<1%) and builds of LLVM itself don't
change due to this patch.
Should future travelers find this change to significantly harm their
build times, I encourage them to feel empowered to revert this
change.
2. SourceManager::getFileIDLocal has a FIXME hinting that the call to
SourceManager::isOffsetInFileID could be made much faster since
isOffsetInFileID is generic in the sense that it tries to handle the
more generic case of "local" (as opposed to "loaded") files, though
the caller has already determined the file to be local. This patch
implements a new method that specialized for use when the caller
already knows the file is local, then use that in
TokenLexer::updateLocForMacroArgTokens. This should be less
controversial than 1, and is likely an across the board win. It's
much less significant for the pathological case, but still a
measurable win once we have fallen to the final case of binary
search. D82497
3. A bunch of methods in SourceManager take a default argument.
SourceManager::getLocalSLocEntry doesn't do anything with this
argument, yet many callers of getLocalSLocEntry setup, pass, then
check this argument. This is wasted work. D82498
With this patch applied, the above profile [5] for the same pathological
input looks like:
* 25.1% time spent in clang::TokenLexer::updateLocForMacroArgTokens
* 17.2% time spent in clang::SourceManager::getFileIDLocal
and clang::SourceManager::isOffsetInFileID is no longer called, and thus
falls out of the profile.
There may be further improvements to the general problem of "what
interval contains one number out of millions" than the current use of a
one item cache, followed by linear probing, followed by binary
searching. We might even be able to do something smarter in
TokenLexer::updateLocForMacroArgTokens.
[0] cdd28ad2d8
[1] https://github.com/ClangBuiltLinux/linux/issues/1032
[2] https://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git/commit/?h=locking/kcsan&id=a5dead405f6be1fb80555bdcb77c406bf133fdc8
[3] https://github.com/ClangBuiltLinux/linux/issues/1032#issuecomment-633712667
[4] https://github.com/ClangBuiltLinux/linux/issues/1032#issuecomment-633741923
[5] https://github.com/ClangBuiltLinux/linux/issues/1032#issuecomment-634932736
Reviewed By: kadircet
Differential Revision: https://reviews.llvm.org/D80681
This is to correct bugs.llvm.org/show_bug.cgi?id=46444
ffinite-math-only is a gcc option. That is the correct spelling.
File modified is clang/docs/UsersManual.rst
I'm not sure if this is a regression from D81448 + D81643,
which moved at least the code cast from elsewhere,
or somehow no one triggered that before.
But now we can reach it with a non-instruction..
It is not straight-forward to write cost-model tests for constantexprs,
`-cost-model -analyze -cost-kind=` does not appear to look at them,
or maybe i'm doing it wrong.
I've encountered that via a SimplifyCFG crash,
so reduced (currently-crashing) test is added.
There are likely other instances.
For now, simply restore previous status quo of
not crashing and returning TTI::TCC_Basic.
We've decided to move away from that by requiring that libc++ is built
as part of the monorepo a while ago. This commit removes code pertaining
to that unsupported use case and produces a clear error when the user
violates that.
In fact, building outside of the monorepo will still work as long as
LLVM_PATH is pointing to the root of the LLVM project, although that
is not officially supported.
Summary:
by removing casts from unsigned to int that which may be implementation
defined according to C++14 (and thus trip up the XL compiler on AIX) by
just using unsigned comparisons/masks and refactor out the range
constants to cleanup things a bit while we are at it.
Reviewers: hubert.reinterpretcast, arsenm
Reviewed By: hubert.reinterpretcast
Subscribers: wdng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82197
Port the remaining tests which only require mechanical changes and delete
test_any.sh.
* Delete old RUN lines
* Replace:
EXEC: ${F18} ... | ${FileCheck} ...
with
RUN: %f18 .. | FileCheck ...
* Prepend RUN line with not when it is expected to fail
Also reinstate a de-activated EXEC line and port it in the same way.
Differential Revision: https://reviews.llvm.org/D82168
Rationale:
In general, passing "fastmath" from MLIR to LLVM backend is not supported, and even just providing such a feature for experimentation is under debate. However, passing fine-grained fastmath related attributes on individual operations is generally accepted. This CL introduces an option to instruct the vector-to-llvm lowering phase to annotate floating-point reductions with the "reassociate" fastmath attribute, which allows the LLVM backend to use SIMD implementations for such constructs. Oher lowering passes can start using this mechanism right away in cases where reassociation is allowed.
Benefit:
For some microbenchmarks on x86-avx2, speedups over 20 were observed for longer vector (due to cleaner, spill-free and SIMD exploiting code).
Usage:
mlir-opt --convert-vector-to-llvm="reassociate-fp-reductions"
Reviewed By: ftynse, mehdi_amini
Differential Revision: https://reviews.llvm.org/D82624
This patch adds LLVM intrinsics for the dcbt (Data Cache Block Touch),
dcbtst (Data Cache Block Touch for Store) and isync (Instruction
Synchronize) instructions.
The intrinsic for dcbt and dcbst in this patch are named llvm.ppc.dcbt.with.hint
and llvm.ppc.dcbtst.with.hint respectively as there already exists an intrinsic
for llvm.ppc.dcbt and llvm.ppc.dcbtst. However, the original variants of the
intrinsics do not accept the TH immediate field, whereas these variants do.
Differential Revision: https://reviews.llvm.org/D79633
In order for these files to build properly, this patch rolls up a number of changes that have been made to various files that have been upstreamed.
Implementations for the interfaces included in Bridge.h and IntrinsicCall.h will be included in a future diff.
Differential revision: https://reviews.llvm.org/D82608
These tests checked for stdout and stderr in the same pipe, which does not
come out in a guaranteed order. test_any.sh's FileCheck accepts CHECK lines in
any order while FileCheck checks must match in order.
Hand port these to pipe stdout to a temp file which is checked with a separate
FileCheck RUN line to test it.
Differential Revision: https://reviews.llvm.org/D82167
test_any.sh's FileCheck accepts the CHECK line matches in any order while
FileCheck checks in strict order. Re-order the CHECK lines to source code
order - they come from an ordered datastructure.
Some CHECK lines are sensitive to line number which are fixed up manually.
getsymbols02 had multiple test inputs which had their own EXEC lines.
Consolidate these together in one file.
Differential Revision: https://reviews.llvm.org/D82166
These tests are sensitive to line numbers in the input and check output.
They also successively write to a temporary file then check that.
Fix the line number issues and replace the temporary file use with successive
calls to FileCheck with different check-prefixes.
Differential Revision: https://reviews.llvm.org/D82165
Add an option to always instrument function entry BB (default off)
Add an option to do atomically updates on the first counter in each
instrumented function.
Differential Revision: https://reviews.llvm.org/D82123