Now, after landing r270560, r270557, r270320 it is a proper time.
Original commit message:
[llvm-mc] - Teach llvm-mc to generate compressed debug sections in zlib style.
Before this patch llvm-mc generated zlib-gnu styled sections.
That means no SHF_COMPRESSED flag was set, magic 'zlib' signature
was used in combination with full size field. Sections were renamed to "*.z*".
This patch reimplements the compression style to zlib one as zlib-gnu looks
to be depricated everywhere.
Differential revision: http://reviews.llvm.org/D20331
llvm-svn: 270569
Similar in spirit to D20497 :
If all elements of a constant vector are known non-zero, then we can say that the
whole vector is known non-zero.
It seems like we could extend this to FP scalar/vector too, but isKnownNonZero()
says it only works for integers and pointers for now.
Differential Revision: http://reviews.llvm.org/D20544
llvm-svn: 270562
Replace bidirectional flow analysis to compute liveness with forward
analysis pass. Treat lifetimes as starting when there is a first
reference to the stack slot, as opposed to starting at the point of the
lifetime.start intrinsic, so as to increase the number of stack
variables we can overlap.
Reviewers: gbiv, qcolumbet, wmi
Differential Revision: http://reviews.llvm.org/D18827
Bug: 25776
llvm-svn: 270559
Fix was:
1) Had to regenerate dwarfdump-test-zlib.elf-x86-64, dwarfdump-test-zlib-gnu.elf-x86-64
(because llvm-symbolizer-zlib.test uses that inputs for its purposes and failed).
2) Updated llvm-symbolizer-zlib.test (updated used call function address to match new files +
added one more check for newly created dwarfdump-test-zlib-gnu.elf-x86-64 binary input).
3) Updated comment in dwarfdump-test-zlib.cc.
Original commit message:
[llvm-dwarfdump] - Teach dwarfdump to decompress debug sections in zlib style.
Before this llvm-dwarfdump only recognized zlib-gnu compression style of headers,
this patch adds support for zlib style.
It looks reasonable to support both styles for dumping,
even if we are not going to suport generating of deprecated gnu one.
Differential revision: http://reviews.llvm.org/D20470
llvm-svn: 270557
Summary:
Change process of parsing of optional operands. All optional operands use same parsing method - parseOptionalOperand().
No default values are added to OperandsVector.
Get rid of WORKAROUND_USE_DUMMY_OPERANDS_INSTEAD_MUTIPLE_DEFAULT_OPERANDS.
Reviewers: tstellarAMD, vpykhtin, artem.tamazov, nhaustov
Subscribers: arsenm, kzhuravl
Differential Revision: http://reviews.llvm.org/D20527
llvm-svn: 270556
fix: forgot to commit the updated dwarfdump-test-zlib.elf-x86-64
Original commit message:
[llvm-dwarfdump] - Teach dwarfdump to decompress debug sections in zlib style.
Before this llvm-dwarfdump only recognized zlib-gnu compression style of headers,
this patch adds support for zlib style.
It looks reasonable to support both styles for dumping,
even if we are not going to suport generating of deprecated gnu one.
Differential revision: http://reviews.llvm.org/D20470
llvm-svn: 270543
Patch by Nitesh Jain.
Summary: The type of Imm in MipsDisassembler.cpp was incorrect since SignExtend64 return int64_t type.As per the MIPSr6 doc ,the offset is added to the address of the instruction following the branch (not the branch itself), to form a PC-relative effective target address hence “4” is added to the offset. The offset of some test case are update to reflect the changes due to “ + 4 ” offset and new test case for negative offset are added.
Reviewers: dsanders, vkalintiris
Differential Revision: http://reviews.llvm.org/D17540
llvm-svn: 270542
Before this llvm-dwarfdump only recognized zlib-gnu compression style of headers,
this patch adds support for zlib style.
It looks reasonable to support both styles for dumping,
even if we are not going to suport generating of deprecated gnu one.
Differential revision: http://reviews.llvm.org/D20470
llvm-svn: 270540
Moved the ModuleLoader and supporting helper loadModuleFromBuffer out of
ThinLTOCodeGenerator and into new LTO.h/LTO.cpp files. This is in
preparation for a patch that will utilize these in the gold-plugin.
Note that there are some other pending patches (D20268 and D20290) that
also plan to refactor common interfaces and functionality into this same
pair of new files.
llvm-svn: 270509
This changes IRCE to optimize uses, and not branches. This change is
NFCI since the uses we do inspect are in practice only ever going to be
the condition use in conditional branches; but this flexibility will
later allow us to analyze more complex expressions than just a direct
branch on a range check.
llvm-svn: 270500
Before r269750 we did the comparisons in this loop in signed ints so
that it DTRT when MinCSFrameIndex was 0. This was changed because it's
now possible for MinCSFrameIndex to be UINT_MAX, but that introduced a
bug when we were comparing `>= 0` - this is tautological in unsigned.
Rework the comparisons here to avoid issues with unsigned wrapping.
No test. I couldn't find a way to get any of the StackGrowsUp in-tree
targets to reach the code that sets MinCSFrameIndex.
llvm-svn: 270492
to llvm-objdump. This section is created with -fembed-bitcode option.
This requires the use of libxar and the Cmake and lit support were crafted by
Chris Bieneman!
rdar://26202242
llvm-svn: 270491
They were accidentally using the 32-bit load/store instruction for
8/16-bit operations, due to incorrect patterns
(8/16-bit cmpxchg and atomicrmw will be fixed in subsequent changes)
llvm-svn: 270486
This effectively revers commit r270389 and re-lands r270106, but it's
almost a rewrite.
The behavior change in r270106 was that we could no longer assume that
each LF_FUNC_ID record got its own type index. This patch adds a map
from DINode* to TypeIndex, so we can stop making that assumption.
This change also emits padding bytes between type records similar to the
way MSVC does. The size of the type record includes the padding bytes.
llvm-svn: 270485
When an aggregate contains an opaque type its size cannot be
determined. This triggers an "Invalid GetElementPtrInst indices for type" assert
in function checkGEPType. The fix suppresses the conversion in this case.
http://reviews.llvm.org/D20319
llvm-svn: 270479
Summary:
This patch turns on LoopUnrollAnalyzer by default. To mitigate compile
time regressions, I chose very conservative thresholds for now. Later we
can make them more aggressive, but it might require being smarter in
which loops we're optimizing. E.g. currently the biggest issue is that
with more agressive thresholds we unroll many cold loops, which
increases compile time for no performance benefit (performance of those
loops is improved, but it doesn't matter since they are cold).
Test results for compile time(using 4 samples to reduce noise):
```
MultiSource/Benchmarks/VersaBench/ecbdes/ecbdes 5.19%
SingleSource/Benchmarks/Polybench/medley/reg_detect/reg_detect 4.19%
MultiSource/Benchmarks/FreeBench/fourinarow/fourinarow 3.39%
MultiSource/Applications/JM/lencod/lencod 1.47%
MultiSource/Benchmarks/Fhourstones-3_1/fhourstones3_1 -6.06%
```
I didn't see any performance changes in the testsuite, but it improves
some internal tests.
Reviewers: hfinkel, chandlerc
Subscribers: llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D20482
llvm-svn: 270478
Summary:
MBBs don't necessarily have a name (in my experience, they almost never
do), in which case this logging is quite unhelpful. The number seems to
work well.
Reviewers: iteratee
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D20533
llvm-svn: 270477
This will pave the way to introduce a full fledged symbol visitor
similar to how we have a type visitor, thus allowing the same
dumping code to be used in llvm-readobj and llvm-pdbdump.
Differential Revision: http://reviews.llvm.org/D20384
Reviewed By: rnk
llvm-svn: 270475
Use the more specific LiveInterval::removeSegment instead of
LiveInterval::shrinkToUses when we know the specific range that's
being removed.
llvm-svn: 270463
Summary: This needs to get in before anything is released concerning attribute. If the old name gets in the wild, then we are stuck with it forever. Putting it in its own diff should getting that part at least in fast.
Reviewers: Wallbraker, whitequark, joker.eph, echristo, rafael, jyknight
Subscribers: llvm-commits, joker.eph
Differential Revision: http://reviews.llvm.org/D20417
llvm-svn: 270452
The exit-on-error flag on the many_args1.ll test is needed to avoid an
unreachable in BPFTargetLowering::LowerCall. We can also avoid it by ignoring
any superfluous arguments to the call (i.e. any arguments after the first 5).
Fixes PR27766.
Differential Revision: http://reviews.llvm.org/D20471
v2 of r270419
llvm-svn: 270440
This patch reverts r270419 because it broke a lot of buildbots,
mostly Windows. We'd like help in investigating the issues, but
for now, it should stay out.
llvm-svn: 270433
The exit-on-error flag on the many_args1.ll test is needed to avoid an
unreachable in BPFTargetLowering::LowerCall. We can also avoid it by ignoring
any superfluous arguments to the call (i.e. any arguments after the first 5).
Fixes PR27766
llvm-svn: 270419
This code should have been with the previous check-in (r270417) and prevents the DelaySlotFiller pass being utilized in functions where the erratum fix has been applied as this will break the run-time code.
llvm-svn: 270418
Due to an erratum in some versions of LEON, we must insert a NOP after any LD or LDF instruction to ensure the processor has time to load the value correctly before using it. This pass will implement that erratum fix.
The code will have no effect for other Sparc, but non-LEON processors.
Differential Review: http://reviews.llvm.org/D20353
llvm-svn: 270417
This isn't the complete fix, but it handles the trivial examples of duplicate vzero* ops in PR27823:
https://llvm.org/bugs/show_bug.cgi?id=27823
...and amusingly, the bogus cases already exist as regression tests, so let's take this baby step.
We'll need to do more in the general case where there's legitimate AVX usage in the function + there's
already a vzero in the code.
Differential Revision: http://reviews.llvm.org/D20477
llvm-svn: 270378
We could try harder to handle non-splat vector constants too,
but that seems much rarer to me.
Note that the div test isn't resolved because there's a check
for isIntegerTy() guarding that transform.
Differential Revision: http://reviews.llvm.org/D20497
llvm-svn: 270369
This fixes a bug introduced in:
r262115 - CodeGen: Take MachineInstr& in SlotIndexes and LiveIntervals, NFC
The iterator End here might == MBB->end(), and so we can't unconditionally
dereference it. This often goes unnoticed (I don't have a test case that always
crashes, and ASAN does not catch it either) because the function call arguments are
turned right back into iterators. MachineInstrBundleIterator's constructor,
however, does have an assert which might randomly fire.
llvm-svn: 270323
A cleanuppad is not cheap, they turn into many instructions and result
in additional spills and fills. It is not worth keeping a cleanuppad
around if all it does is hold a lifetime.end instruction.
N.B. We first try to merge the cleanuppad with another cleanuppad to
avoid dropping the lifetime and debug info markers.
llvm-svn: 270314
Allocating larger register classes first should give better allocation
results (and more importantly for myself, make the lit tests more stable
with respect to scheduler changes).
Patch by Matthias Braun
llvm-svn: 270312
The InductiveRangeCheck struct is only five words long; so passing these
around value is fine. The allocator makes the code look more complex
than it is.
llvm-svn: 270309
I had used `std::remove_if` under the assumption that it moves the
predicate matching elements to the end, but actaully the elements
remaining towards the end (after the iterator returned by
`std::remove_if`) are indeterminate. Fix the bug (and make the code
more straightforward) by using a temporary SmallVector, and add a test
case demonstrating the issue.
llvm-svn: 270306
Prior to this patch, we were using 1 for all the repairing costs.
Now, we use the information from the target to get this information.
llvm-svn: 270304
The current SGPR spilling test does not stress this
because it is using s_buffer_load instructions to
increase SGPR pressure and spill, but their output
operands have the same SReg_32_XM0 constraint. This fixes
an error when the SReg_32 output from most instructions
is spilled.
llvm-svn: 270301
This saves a small amount of code size, and is a first small step toward
passing values on the stack across block boundaries.
Differential Review: http://reviews.llvm.org/D20450
llvm-svn: 270294
We now use LiveRangeCalc::extendToUses() instead of a specially designed
algorithm in constructMainRangeFromSubranges():
- The original motivation for constructMainRangeFromSubranges() were
differences between the main liverange and subranges because of hidden
dead definitions. This case however cannot happen anymore with the
DetectDeadLaneMasks pass in place.
- It simplifies the code.
- This fixes a longstanding bug where we did not properly create new SSA
values on merging control flow (the MachineVerifier missed most of
these cases).
- Move constructMainRangeFromSubranges() to LiveIntervalAnalysis and
LiveRangeCalc to better match the implementation/available helper
functions.
This re-applies r269016. The fixes from r270290 and r270259 should avoid
the machine verifier problems this time.
llvm-svn: 270291
It is fine for subregister ranges to be undefined on some CFG paths as
we may have a "vregX:other_subreg<read-undef> =" def on that path. We
do not (and should not) have live segments for the subregister ranges.
The MachineVerifier should not complain about this.
This is a slight variant of http://llvm.org/PR27705
llvm-svn: 270290
- Where we were returning a node before, call ReplaceNode instead.
- Where we would return null to fall back to another selector, rename
the method to try* and return a bool for success.
- Where we were calling SelectNodeTo, just return afterwards.
Part of llvm.org/pr26808.
llvm-svn: 270283
the C standard library implementation in use.
This works around a glibc bug in the backtrace() function where it fails to
produce a backtrace on x86_64 if libgcc / libunwind is statically linked.
llvm-svn: 270276
When it has a DataLayout, DecomposeGEPExpression() should return the same object
as GetUnderlyingObject(). Per the FIXME, it currently always has a DL, so the
runtime check is redundant and can become an assert.
llvm-svn: 270268
Summary:
Uses ModulePass instead of FunctionPass for EfficiencySanitizerPass to
better support global variable creation for a forthcoming struct field
counter tool.
Patch by Qin Zhao.
Reviewers: aizatsky
Subscribers: llvm-commits, eugenis, vitalybuka, bruening, kcc
Differential Revision: http://reviews.llvm.org/D20458
llvm-svn: 270263
DBI stream contains a stream number of the symbol record stream.
Symbol record streams is an array of length-type-value members.
Each member represents one symbol.
Publics stream contains offsets to the symbol record stream.
This patch is to print out all symbols that are referenced by
the publics stream.
Note that even with this patch, llvm-pdbdump cannot dump all the
information in a publics stream since it contains more information
than symbol names. I'll improve it in followup patches.
Differential Revision: http://reviews.llvm.org/D20480
llvm-svn: 270262
Depending on the compiler used to build LLVM, llvm_unreachable can either
expand to a call to abort(), or to a __builtin_unreachable. The latter
does not have a predictable behavior at runtime.
llvm-svn: 270260
Fix renameDisconnectedComponents() creating vreg uses that can be
reached from function begin withouthaving a definition (or explicit
live-in). Fix this by inserting IMPLICIT_DEF instruction before
control-flow joins as necessary.
Removes an assert from MachineScheduler because we may now get
additional IMPLICIT_DEF when preparing the scheduling policy.
This fixes the underlying problem of http://llvm.org/PR27705
llvm-svn: 270259
This gives AsmPrinter a chance to initialize its DD field before
we call beginModule(), which is about to start using it.
Differential Revision: http://reviews.llvm.org/D20413
llvm-svn: 270258
We are about to start using DIEDwarfExpression to create global variable
DIEs, which happens before we generate code for functions.
Differential Revision: http://reviews.llvm.org/D20412
llvm-svn: 270257
Summary:
As this optimization converts two loads into one load with two shift instructions,
it could potentially hurt performance if a loop is arithmetic operation intensive.
Reviewers: t.p.northover, mcrosier, jmolloy
Subscribers: evandro, jmolloy, aemerson, rengolin, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D20172
llvm-svn: 270251
Check that the incoming blocks of phi nodes are identical, and block
function merging if they are not.
rdar://problem/26255167
Differential Revision: http://reviews.llvm.org/D20462
llvm-svn: 270250
The Fast mode takes the first mapping, the greedy mode loops over all
the possible mapping for an instruction and choose the cheaper one.
Test case will come with target specific code, since we currently do not
have instructions that have several mappings.
llvm-svn: 270249
The uuid_command was duplicating the load_command.cmdsize field. This removes the duplicate from the YAML mapping and from the test cases.
llvm-svn: 270248
We performed a number of memory allocations each time getTTI was called,
remove them by using SmallString.
No functionality change intended.
llvm-svn: 270246
computeMapping.
Computing the cost of a mapping takes some time.
Since in Fast mode, the cost is irrelevant, just spare some cycles by not
computing it.
In Greedy mode, we need to choose the best cost, that means that when
the local cost gets more expensive than the best cost, we can stop
computing the repairing and cost for the current mapping.
llvm-svn: 270245
The previous choice of the insertion points for repairing was
straightfoward but may introduce some basic block or edge splitting. In
some situation this is something we can avoid.
For instance, when repairing a phi argument, instead of placing the
repairing on the related incoming edge, we may move it to the previous
block, before the terminators. This is only possible when the argument
is not defined by one of the terminator.
llvm-svn: 270232
This patch is a first step towards a more extendible method of matching combined target shuffle masks.
Initially this just pulls out the existing basic mask matches and adds support for some 256/512 bit equivalents. Future patterns will require a number of features to be added but I wanted to keep this patch simple.
I hope we can avoid duplication between shuffle lowering and combining and share more complex pattern match functions in future commits.
Differential Revision: http://reviews.llvm.org/D19198
llvm-svn: 270230
This refactors the logic in X86 to avoid code duplication. It also
splits it in two steps: it first decides if a symbol is local to the DSO
and then uses that information to decide how to access it.
The first part is implemented by shouldAssumeDSOLocal. It is not in any
way specific to X86. In a followup patch I intend to move it to
somewhere common and reused it in other backends.
llvm-svn: 270209
If an inline function is observed but unused in a translation unit, dummy
coverage mapping data with zero hash is stored for this function.
If such a coverage mapping section came earlier than real one, the latter
was ignored. As a result, llvm-cov was unable to show coverage information
for those functions.
Differential Revision: http://reviews.llvm.org/D20286
llvm-svn: 270194
The ``nprocs`` command does not exist under Mac OSX so use
``sysctl`` instead on that platform.
Whilst I'm here
* Use ``pclose()`` instead of ``fclose()`` which the ``popen()``
documentation says should be used.
* Check for errors that were previously unhandled.
Differential Revision: http://reviews.llvm.org/D20409
llvm-svn: 270172
an instruction.
Use the previously introduced RepairingPlacement class to split the code
computing the repairing placement from the code doing the actual
placement. That way, we will be able to consider different placement and
then, only apply the best one.
llvm-svn: 270168
When assigning the register banks we may have to insert repairing code
to move already assigned values accross register banks.
Introduce a few helper classes to keep track of what is involved in the
repairing of an operand:
- InsertPoint and its derived classes record the positions, in the CFG,
where repairing has to be inserted.
- RepairingPlacement holds all the insert points for the repairing of an
operand plus the kind of action that is required to do the repairing.
This is going to be used to keep track of how the repairing should be
done, while comparing different solutions for an instruction. Indeed, we
will need the repairing placement to capture the cost of a solution and
we do not want to compute it a second time when we do the actual
repairing.
llvm-svn: 270167
register bank twice.
Prior to this change, we were checking if the assignment for the current
machine operand was matching, then we would check if the mismatch
requires to insert repair code.
We actually already have this information from the first check, so just
pass it along.
NFCI.
llvm-svn: 270166
Sorry for the lack testcase. There is one in the pr, but it depends on
std::sort and the .ll version is 110 lines, so I don't think it is
wort it.
The bug was that we were sorting after adding a terminator, and the
sorting algorithm could end up putting the terminator in the middle of
the List vector.
With that we would create a Spans map entry keyed on nullptr which would
then be added to CUs and fail in that sorting.
llvm-svn: 270165
This helper class will be used to represent the cost of mapping an
instruction to a specific register bank.
The particularity of these costs is that they are mostly local, thus the
frequency of the basic block is irrelevant. However, for few
instructions (e.g., phis and terminators), the cost may be non-local and
then, we need to account for the frequency of the involved basic blocks.
This will be used by the greedy mode I am working on.
llvm-svn: 270163
Before r257832, the threshold used by SimpleInliner was explicitly specified or generated from opt levels and passed to the base class Inliner's constructor. There, it was first overridden by explicitly specified -inline-threshold. The refactoring in r257832 did not preserve this behavior for all opt levels. This change brings back the original behavior.
Differential Revision: http://reviews.llvm.org/D20452
llvm-svn: 270153
Sequences of range checks expressed using guards, like
guard((I - 2) u< L)
guard((I - 1) u< L)
guard((I + 0) u< L)
guard((I + 1) u< L)
guard((I + 2) u< L)
can sometimes be combined into a smaller sequence:
guard((I - 2) u< L AND (I + 2) u< L)
if we can prove that (I - 2) u< L AND (I + 2) u< L implies all of checks
expressed in the previous sequence.
This change teaches GuardWidening to do this kind of merging when
feasible.
llvm-svn: 270151
Using Chandler's words from r265331:
This commit was greatly exacerbating PR17409 and effectively regressed
build time for lot of (very large) code when compiled with ASan or MSan.
PR17409 is fixed by r269249, so this is fine to reapply r263460.
Original commit message:
The bad behavior happens when we have a function with a long linear
chain of basic blocks, and have a live range spanning most of this
chain, but with very few uses.
Let say we have only 2 uses.
The Hopfield network is only seeded with two active blocks where the
uses are, and each iteration of the outer loop in
`RAGreedy::growRegion()` only adds two new nodes to the network due to
the completely linear shape of the CFG. Meanwhile,
`SpillPlacer->iterate()` visits the whole set of discovered nodes, which
adds up to a quadratic algorithm.
This is an historical accident effect from r129188.
When the Hopfield network is expanding, most of the action is happening
on the frontier where new nodes are being added. The internal nodes in
the network are not likely to be flip-flopping much, or they will at
least settle down very quickly. This means that while
`SpillPlacer->iterate()` is recomputing all the nodes in the network, it
is probably only the two frontier nodes that are changing their output.
Instead of recomputing the whole network on each iteration, we can
maintain a SparseSet of nodes that need to be updated:
- `SpillPlacement::activate()` adds the node to the todo list.
- When a node changes value (i.e., `update()` returns true), its
neighbors are added to the todo list.
- `SpillPlacement::iterate()` only updates the nodes in the list.
The result of Hopfield iterations is not necessarily exact. It should
converge to a local minimum, but there is no guarantee that it will find
a global minimum. It is possible that updating nodes in a different
order will cause us to switch to a different local minimum. In other
words, this is not NFC, but although I saw a few runtime improvements
and regressions when I benchmarked this change, those were side effects
and actually the performance change is in the noise as expected.
Huge thanks to Jakob Stoklund Olesen <stoklund@2pi.dk> for his
feedbacks, guidance and time for the review.
llvm-svn: 270149
Work around crashes in ``__sanitizer_malloc_hook()`` under Mac OSX.
Under Mac OSX we intercept calls to malloc before thread local
storage is initialised leading to a crash when accessing
``AllocTracer``. To workaround this ``AllocTracer`` is only accessed
in the hook under Linux. For symmetry ``__sanitizer_free_hook()``
is also modified in the same way.
To support this change a set of new macros
LIBFUZZER_LINUX and LIBFUZZER_APPLE has been defined which can be
used to check the target being compiled for.
Differential Revision: http://reviews.llvm.org/D20402
llvm-svn: 270145
This removes the subclasses of ProfileSummary, moves the members of the derived classes to the base class.
Differential Revision: http://reviews.llvm.org/D20390
llvm-svn: 270143
When matching an interleaved load to an ldN pattern, the interleaved access
pass checks that all users of the load are shuffles. If the load is used by an
instruction other than a shuffle, the pass gives up and an ldN is not
generated. This patch considers users of the load that are extractelement
instructions. It attempts to modify the extracts to use one of the available
shuffles rather than the load. After the transformation, the load is only used
by shuffles and will then be matched with an ldN pattern.
Differential Revision: http://reviews.llvm.org/D20250
llvm-svn: 270142
This splits ProfileSummary into two classes: a ProfileSummary class that has methods to convert from/to metadata and a ProfileSummaryBuilder class that computes the profiles summary which is in ProfileData.
Differential Revision: http://reviews.llvm.org/D20314
llvm-svn: 270136
This patch fixes https://llvm.org/bugs/show_bug.cgi?id=27703.
If there is a sequence of one or more load instructions, each loaded value is used as address of later load instruction, bitcast is necessary to change the value type, don't optimize it.
llvm-svn: 270135
This re-applies r270115.
Many of the MachO load commands can have data appended after the command structure. This data is frequently strings, but can actually be anything. This patch adds support for three optional fields on load command yaml descriptions.
The new PayloadString YAML field is populated with the data after load commands known to have strings as extra data.
The new ZeroPadBytes YAML field is a count of zero'd bytes after the end of the load command structure before the next command. This can apply anywhere in the file. MachO2YAML verifies that bytes are zero before populating this field, and YAML2MachO will add zero'd bytes.
The new PayloadBytes YAML field stores all bytes after the end of the load command structure before the next command if they are non-zero. This is a catch all for all unhandled bytes. If MachO2Yaml populates PayloadBytes it will not populate ZeroPadBytes, instead zero'd bytes will be in the PayloadBytes structure.
llvm-svn: 270124
Many of the MachO load commands can have data appended after the command structure. This data is frequently strings, but can actually be anything. This patch adds support for three optional fields on load command yaml descriptions.
The new PayloadString YAML field is populated with the data after load commands known to have strings as extra data.
The new ZeroPadBytes YAML field is a count of zero'd bytes after the end of the load command structure before the next command. This can apply anywhere in the file. MachO2YAML verifies that bytes are zero before populating this field, and YAML2MachO will add zero'd bytes.
The new PayloadBytes YAML field stores all bytes after the end of the load command structure before the next command if they are non-zero. This is a catch all for all unhandled bytes. If MachO2Yaml populates PayloadBytes it will not populate ZeroPadBytes, instead zero'd bytes will be in the PayloadBytes structure.
llvm-svn: 270115
Since the calls don't return, the instruction afterwards will never run,
and is just taking up unnecessary space in the binary.
Differential Revision: http://reviews.llvm.org/D20406
llvm-svn: 270109
A baby step toward translating DIType records to CodeView.
This does not (yet) combine the record length with the record data. I'm going back and forth trying to determine if that's a good idea.
llvm-svn: 270106
Previously, specifying -post-RA-scheduler=true had the side effect of
disabling the antidependency breaker, yielding different behavior than
if the post-RA-scheduler was enabled via the scheduling model.
Differential Revision: http://reviews.llvm.org/D20186
llvm-svn: 270077
It broke buildbot:
http://lab.llvm.org:8011/builders/clang-s390x-linux/builds/4817/steps/ninja%20check%201/logs/stdio
Actually it is just because D20273 not yet commited, but these 2 were crossing with each other,
and I`ll better find the way to land them separatelly soon.
Initial commit message:
[llvm-mc] - Teach llvm-mc to generate compressed debug sections in zlib style.
Before this patch llvm-mc generated zlib-gnu styled sections.
That means no SHF_COMPRESSED flag was set, magic 'zlib' signature
was used in combination with full size field. Sections were renamed to "*.z*".
This patch reimplements the compression style to zlib one as zlib-gnu looks
to be depricated everywhere.
Differential revision: http://reviews.llvm.org/D20331
llvm-svn: 270075
There are at least 2 places (DAGCombiner, X86ISelLowering) where this could be used instead
of ad-hoc and watered down code that is trying to match a power-of-2 pattern.
Differential Revision: http://reviews.llvm.org/D20439
llvm-svn: 270073
This patch changes the order in which we attempt to prove the independence of
strided accesses. We previously did this after we knew the dependence distance
was positive. With this change, we check for independence before handling the
negative distance case. The patch prevents LAA from reporting forward
dependences for independent strided accesses.
This change was requested in the review of D19984.
llvm-svn: 270072
Before this patch llvm-mc generated zlib-gnu styled sections.
That means no SHF_COMPRESSED flag was set, magic 'zlib' signature
was used in combination with full size field. Sections were renamed to "*.z*".
This patch reimplements the compression style to zlib one as zlib-gnu looks
to be depricated everywhere.
Differential revision: http://reviews.llvm.org/D20331
llvm-svn: 270070
Mask0Imm and ~Mask1Imm must be equivalent and one of the MaskImms is a shifted
mask (e.g., 0x000ffff0). Both 'and's must have a single use.
This changes code like:
and w8, w0, #0xffff000f
and w9, w1, #0x0000fff0
orr w0, w9, w8
into
lsr w8, w1, #4
bfi w0, w8, #4, #12
llvm-svn: 270063
Fixes for MUBUF_Atomic instructions to make operand list valid:
- For RTN insns, make a copy of $vdata_in operand as $vdata.
- Do not add operand for GLC, it is hardcoded and comes as a token.
Workaround to avoid adding multiple default optional operands.
Tests added.
Differential Revision: http://reviews.llvm.org/D20257
llvm-svn: 270049
Enable "Remove Redundant LEAs" part of the LEA optimization pass for -O2.
This gives 6.4% performance improve on Broadwell on nnet benchmark from Coremark-pro.
There is no significant effect on other benchmarks (Geekbench, Spec2000, Spec2006).
Differential Revision: http://reviews.llvm.org/D19659
llvm-svn: 270036